User menu

Modelling approach for the quantitative variation of sex expression in monoecious hemp (Cannabis sativa L.)

Bibliographic reference Faux, Anne-Michelle ; Bertin, Pierre. Modelling approach for the quantitative variation of sex expression in monoecious hemp (Cannabis sativa L.). In: plant breeding, Vol. 133, p. 782-787 (2014)
Permanent URL http://hdl.handle.net/2078.1/150794
  1. Boer M. P., Wright D., Feng L., Podlich D. W., Luo L., Cooper M., van Eeuwijk F. A., A Mixed-Model Quantitative Trait Loci (QTL) Analysis for Multiple-Environment Trial Data Using Environmental Covariables for QTL-by-Environment Interactions, With an Example in Maize, 10.1534/genetics.107.071068
  2. Diaz Aurora, Fergany Mohamed, Formisano Gelsomina, Ziarsolo Peio, Blanca José, Fei Zhanjun, Staub Jack E, Zalapa Juan E, Cuevas Hugo E, Dace Gayle, Oliver Marc, Boissot Nathalie, Dogimont Catherine, Pitrat Michel, Hofstede René, van Koert Paul, Harel-Beja Rotem, Tzuri Galil, Portnoy Vitaly, Cohen Shahar, Schaffer Arthur, Katzir Nurit, Xu Yong, Zhang Haiying, Fukino Nobuko, Matsumoto Satoru, Garcia-Mas Jordi, Monforte Antonio J, A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.), 10.1186/1471-2229-11-111
  3. Faux A.-M., Draye X., Lambert R., d’Andrimont R., Raulier P., Bertin P., The relationship of stem and seed yields to flowering phenology and sex expression in monoecious hemp (Cannabis sativa L.), 10.1016/j.eja.2013.01.006
  4. Faux Anne-Michelle, Berhin Alice, Dauguet Nicolas, Bertin Pierre, Sex chromosomes and quantitative sex expression in monoecious hemp (Cannabis sativa L.), 10.1007/s10681-013-1023-y
  5. Fazio G., Staub J. E., Stevens M. R., Genetic mapping and QTL analysis of horticultural traits in cucumber ( Cucumis sativus L.) using recombinant inbred lines, 10.1007/s00122-003-1277-1
  6. Fournier, Le chanvre industriel, production et utilisations, 89 (2006)
  7. Freeman D. C., Harper K. T., Charnov E. L., Sex change in plants: Old and new observations and new hypotheses, 10.1007/bf00346825
  8. Ma, Genetics, 161, 1751 (2002)
  9. Malosetti M., Visser R. G. F., Celis-Gamboa C., van Eeuwijk F. A., QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato, 10.1007/s00122-006-0294-2
  10. Marguerit Elisa, Boury Christophe, Manicki Aurélie, Donnart Martine, Butterlin Gisèle, Némorin Alice, Wiedemann-Merdinoglu Sabine, Merdinoglu Didier, Ollat Nathalie, Decroocq Stéphane, Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine, 10.1007/s00122-009-0979-4
  11. Miao Han, Zhang Shengping, Wang Xiaowu, Zhang Zhonghua, Li Man, Mu Shengqi, Cheng Zhouchao, Zhang Ruowei, Huang Sanwen, Xie Bingyan, Fang Zhiyuan, Zhang Zhenxian, Weng Yiqun, Gu Xingfang, A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits, 10.1007/s10681-011-0410-5
  12. Pastina M. M., Malosetti M., Gazaffi R., Mollinari M., Margarido G. R. A., Oliveira K. M., Pinto L. R., Souza A. P., van Eeuwijk F. A., Garcia A. A. F., A mixed model QTL analysis for sugarcane multiple-harvest-location trial data, 10.1007/s00122-011-1748-8
  13. Piepho Hans-Peter, Möhring Jens, Schulz-Streeck Torben, Ogutu Joseph O., A stage-wise approach for the analysis of multi-environment trials : Stage-wise analysis of trials, 10.1002/bimj.201100219
  14. Prothro, J. Amer. Soc. Hort. Sci., 138, 125 (2013)
  15. Reymond M., Combining Quantitative Trait Loci Analysis and an Ecophysiological Model to Analyze the Genetic Variability of the Responses of Maize Leaf Growth to Temperature and Water Deficit, 10.1104/pp.013839
  16. SAS Institute Inc, SAS® 9.3 help and documentation (2012)
  17. Sengbusch, Z Pflanzenzüchtung, 31, 319 (1952)
  18. C. Serquen Felix, Bacher J, Staub JE, 10.1023/a:1009689002015
  19. Struik P.C., Amaducci S., Bullard M.J., Stutterheim N.C., Venturi G., Cromack H.T.H., Agronomy of fibre hemp (Cannabis sativa L.) in Europe, 10.1016/s0926-6690(99)00048-5
  20. Truta, Analele Stiintifice ale Universitatii “Alexandru Ioan Cuza”, Sectiunea Genetica si Biologie Moleculara, TOM, VIII, 31 (2007)
  21. van der Werf Hayo M. G., Life Cycle Analysis of field production of fibre hemp, the effect of production practices on environmental impacts, 10.1007/s10681-004-4750-2
  22. WERF HMG VAN DER, MATHUSSEN E W J M, HAVERKORT A J, The potential of hemp (Cannabis sativa L.) for sustainable fibre production: a crop physiological appraisal, 10.1111/j.1744-7348.1996.tb05736.x
  23. W. Wu, Y. Zhou, W. Li, D. Mao, Q. Chen, Mapping of quantitative trait loci based on growth models, 10.1007/s00122-002-1052-8
  24. Wu R., A General Framework for Analyzing the Genetic Architecture of Developmental Characteristics, 10.1534/genetics.166.3.1541
  25. YIN X., A Flexible Sigmoid Function of Determinate Growth, 10.1093/aob/mcg029
  26. Yin X., Model analysis of flowering phenology in recombinant inbred lines of barley, 10.1093/jxb/eri089
  27. Yuan X. J., Pan J. S., Cai R., Guan Y., Liu L. Z., Zhang W. W., Li Z., He H. L., Zhang C., Si L. T., Zhu L. H., Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines, 10.1007/s10681-008-9722-5