User menu

Exergy analysis of energy-intensive production processes: Advancing towards a sustainable chemical industry

Bibliographic reference Luis Alconero, Patricia ; Van der Bruggen, Bart. Exergy analysis of energy-intensive production processes: Advancing towards a sustainable chemical industry. In: Journal of Chemical Technology and Biotechnology, Vol. 89, no. 9, p. 1288-1303
Permanent URL http://hdl.handle.net/2078.1/150309
  1. Hinderink A. P., van der Kooi H. J., de Swaan Arons J., On the efficiency and sustainability of the process industry, 10.1039/a909915h
  2. Luis, J Chem Technol Biotechnol, 88, 1951 (2013)
  3. Sieniutycz Stanislaw, Thermodynamic limits on production or consumption of mechanical energy in practical and industrial systems, 10.1016/s0360-1285(03)00020-0
  4. Richards, Int J Energy Res, 33, 1341 (2009)
  5. Shablovskii Ya. O., Exergetic analysis of reactions with participation of solid phases, 10.1134/s0040579513040301
  6. Dewulf Jo, Van Langenhove Herman, Muys Bart, Bruers Stijn, Bakshi Bhavik R., Grubb Geoffrey F., Paulus D. M., Sciubba Enrico, Exergy: Its Potential and Limitations in Environmental Science and Technology, 10.1021/es071719a
  7. Bejan, lnt J Energy Res, 26, 545 (2002)
  8. Madlool N.A., Saidur R., Rahim N.A., Islam M.R., Hossian M.S., An exergy analysis for cement industries: An overview, 10.1016/j.rser.2011.09.013
  9. Chu Steven, Majumdar Arun, Opportunities and challenges for a sustainable energy future, 10.1038/nature11475
  10. Taibi Emanuele, Gielen Dolf, Bazilian Morgan, The potential for renewable energy in industrial applications, 10.1016/j.rser.2011.08.039
  11. Oda Junichiro, Akimoto Keigo, Tomoda Toshimasa, Nagashima Miyuki, Wada Kenichi, Sano Fuminori, International comparisons of energy efficiency in power, steel, and cement industries, 10.1016/j.enpol.2012.01.024
  12. IEA International Energy Agency Paris, France 2009
  13. Kuramochi Takeshi, Ramírez Andrea, Turkenburg Wim, Faaij André, Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes, 10.1016/j.pecs.2011.05.001
  14. Luis Patricia, Van Gerven Tom, Van der Bruggen Bart, Recent developments in membrane-based technologies for CO2 capture, 10.1016/j.pecs.2012.01.004
  15. Wall G, Exergy flows in industrial processes, 10.1016/0360-5442(88)90046-1
  16. Dincer Ibrahim, The role of exergy in energy policy making, 10.1016/s0301-4215(01)00079-9
  17. BREFs Reference documents on best available techniques in several sectors http://eippcb.jrc.ec.europa.eu/reference/
  18. Panchenko S. V., Automated Analysis of the Energy-Saving Potential in a Thermal Engineering System for Phosphorus Production, 10.1023/b:tfce.0000043807.10514.5a
  19. Benhelal Emad, Zahedi Gholamreza, Shamsaei Ezzatollah, Bahadori Alireza, Global strategies and potentials to curb CO2 emissions in cement industry, 10.1016/j.jclepro.2012.10.049
  20. Oladiran M.T., Meyer J.P., Energy and exergy analyses of energy consumptions in the industrial sector in South Africa, 10.1016/j.apenergy.2007.02.004
  21. Abdelaziz E.A., Saidur R., Mekhilef S., A review on energy saving strategies in industrial sector, 10.1016/j.rser.2010.09.003
  22. BoroumandJazi G., Rismanchi B., Saidur R., A review on exergy analysis of industrial sector, 10.1016/j.rser.2013.06.054
  23. Riekert Lothar, The efficiency of energy-utilization in chemical processes, 10.1016/0009-2509(74)87012-0
  24. Riekert Lothar, The conversion of energy in chemical reactions, 10.1016/0013-7480(76)90019-x
  25. GAO L, Exergy analysis of coal-based polygeneration system for power and chemical production, 10.1016/j.energy.2004.03.046
  26. WANG Z, ZHENG D, JIN H, A novel polygeneration system integrating the acetylene production process and fuel cell, 10.1016/j.ijhydene.2007.03.018
  27. Guo Jing, Zheng Danxing, Thermodynamic Analysis of Low-Rank-Coal-Based Oxygen-Thermal Acetylene Manufacturing Process System, 10.1021/ie301986q
  28. Wang Zhifang, Zheng Danxing, Jin Hongguang, Energy integration of acetylene and power polygeneration by flowrate-exergy diagram, 10.1016/j.apenergy.2008.05.011
  29. Qian Yu, Liu Jingyao, Huang Zhixian, Kraslawski Andrzej, Cui Jian, Huang Yinlun, Conceptual design and system analysis of a poly-generation system for power and olefin production from natural gas, 10.1016/j.apenergy.2008.12.014
  30. Duan, Tsinghua Sci Technol, 7, 190 (2002)
  31. Rihko-Struckmann Liisa K., Peschel Andreas, Hanke-Rauschenbach Richard, Sundmacher Kai, Assessment of Methanol Synthesis Utilizing Exhaust CO2for Chemical Storage of Electrical Energy, 10.1021/ie100508w
  32. Liu Guang-jian, Li Zheng, Wang Ming-hua, Ni Wei-dou, Energy savings by co-production: A methanol/electricity case study, 10.1016/j.apenergy.2009.08.036
  33. Zhou Li, Hu Shanying, Li Yourun, Zhou Qihong, Study on co-feed and co-production system based on coal and natural gas for producing DME and electricity, 10.1016/j.cej.2007.03.025
  34. Richards Tobias, Pavletic Carlos, Pettersson Johan, Efficiencies of NaOH production methods in a Kraft pulp mill, 10.1002/er.1546
  35. Leites I.L., Sama D.A., Lior N., The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes, 10.1016/s0360-5442(02)00107-x
  36. Hinderink A.P., Kerkhof F.P.J.M., Lie A.B.K., De Swaan Arons J., Van Der Kooi H.J., Exergy analysis with a flowsheeting simulator—II. Application; synthesis gas production from natural gas, 10.1016/0009-2509(96)00221-7
  37. Ostrovski, Energy, 30, 2772 (2005)
  38. Sorin, Trans I Chem E, 76:Part A (1998)
  39. Harmsen, In Foundations of Computer-Aided Process Design, 323, 364 (2000)
  40. Khurana Shaleen, Banerjee Rangan, Gaitonde Uday, Energy balance and cogeneration for a cement plant, 10.1016/s1359-4311(01)00128-4
  41. Engin Tahsin, Ari Vedat, Energy auditing and recovery for dry type cement rotary kiln systems––A case study, 10.1016/j.enconman.2004.04.007
  42. Hasanbeigi Ali, Menke Christoph, Price Lynn, The CO2 abatement cost curve for the Thailand cement industry, 10.1016/j.jclepro.2010.06.005
  43. Chen C., Habert G., Bouzidi Y., Jullien A., Environmental impact of cement production: detail of the different processes and cement plant variability evaluation, 10.1016/j.jclepro.2009.12.014
  44. Karellas S., Leontaritis A.-D., Panousis G., Bellos E., Kakaras E., Energetic and exergetic analysis of waste heat recovery systems in the cement industry, 10.1016/j.energy.2013.03.097
  45. Madlool N.A., Saidur R., Hossain M.S., Rahim N.A., A critical review on energy use and savings in the cement industries, 10.1016/j.rser.2011.01.005
  46. Ashrafizadeh Seyed Ali, Amidpour Majid, Allahverdi Ali, Exergetic and environmental performance improvement in cement production process by driving force distribution, 10.1007/s11814-011-0226-y
  47. Söğüt Z., Oktay Z., Karakoc H., Hepbasli A., Investigation of environmental and exergetic performance for coal-preparation units in cement production processes, 10.1016/j.energy.2012.04.041
  48. Kabir G., Abubakar A.I., El-Nafaty U.A., Energy audit and conservation opportunities for pyroprocessing unit of a typical dry process cement plant, 10.1016/j.energy.2009.11.003
  49. Kolip, Sci Res Essays, 5, 2702 (2010)
  50. Pardo Nicolás, Moya José Antonio, Mercier Arnaud, Prospective on the energy efficiency and CO2 emissions in the EU cement industry, 10.1016/j.energy.2011.03.016
  51. Ari, Sci Res Essays, 6, 1428 (2011)
  52. Sogut Ziya, Oktay Zuhal, Karakoc Hikmet, Impact assessment of CO2 emissions caused by exergy losses in the cement sector, 10.1504/ijex.2011.043049
  53. Ziya SÖĞÜT M., A research on exergy consumption and potential of total CO2 emission in the Turkish cement sector, 10.1016/j.enconman.2011.11.004
  54. Koroneos C., Roumbas G., Moussiopoulos N., Exergy analysis of cement production, 10.1504/ijex.2005.006433
  55. Sagastume Gutiérrez Alexis, Cogollos Martínez Juan B., Vandecasteele Carlo, Energy and exergy assessments of a lime shaft kiln, 10.1016/j.applthermaleng.2012.07.013
  56. Aranda Usón Alfonso, López-Sabirón Ana M., Ferreira Germán, Llera Sastresa Eva, Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options, 10.1016/j.rser.2013.02.024
  57. Renó Maria Luiza Grillo, Torres Felipe Martins, da Silva Rogério José, Santos José Joaquim Conceição Soares, Melo Mirian de Lourdes Noronha Motta, Exergy analyses in cement production applying waste fuel and mineralizer, 10.1016/j.enconman.2013.05.043
  58. Ali M.B., Saidur R., Hossain M.S., A review on emission analysis in cement industries, 10.1016/j.rser.2011.02.014
  59. Madlool N.A., Saidur R., Rahim N.A., Kamalisarvestani M., An overview of energy savings measures for cement industries, 10.1016/j.rser.2012.10.046
  60. Çamdali Ünal, Eri̇şen Ali, Çelen Füsun, Energy and exergy analyses in a rotary burner with pre-calcinations in cement production, 10.1016/j.enconman.2003.12.002
  61. Utlu Zafer, Sogut Ziya, Hepbasli Arif, Oktay Zuhal, Energy and exergy analyses of a raw mill in a cement production, 10.1016/j.applthermaleng.2005.11.016
  62. Wang Jiangfeng, Dai Yiping, Gao Lin, Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry, 10.1016/j.apenergy.2008.09.001
  63. Söğüt Ziya, Oktay Zuhal, Karakoç Hikmet, Mathematical modeling of heat recovery from a rotary kiln, 10.1016/j.applthermaleng.2009.12.009
  64. Kolip, Int J Phys Sci, 5, 1147 (2010)
  65. Gutiérrez Alexis Sagastume, Vandecasteele Carlo, Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production, 10.1016/j.energy.2011.02.023
  66. Levine, Energy Efficiency Improvement Utilizing High Technology (1995)
  67. Giraldo Luis, Hyman Barry, An energy process-step model for manufacturing paper and paperboard, 10.1016/0360-5442(96)00016-3
  68. Szabó L., Soria A., Forsström J., Keränen J.T., Hytönen E., A world model of the pulp and paper industry: Demand, energy consumption and emission scenarios to 2030, 10.1016/j.envsci.2009.01.011
  69. Chen Hua-Wei, Hsu Chung-Hsuan, Hong Gui-Bing, The case study of energy flow analysis and strategy in pulp and paper industry, 10.1016/j.enpol.2012.01.037
  70. Ozalp Nesrin, Hyman Barry, Energy end-use model of paper manufacturing in the US, 10.1016/j.applthermaleng.2005.07.032
  71. Beer, Energy, 23, 121 (1998)
  72. Utlu Zafer, Kincay Olcay, An assessment of a pulp and paper mill through energy and exergy analyses, 10.1016/j.energy.2013.05.054
  73. Kong Lingbo, Liu Huanbin, Li Jigeng, Tao Jinsong, Waste Heat Integration of Coating Paper Machine Drying Process, 10.1080/07373937.2010.506620
  74. Holmberg Henrik, Tuomaala Mari, Haikonen Turo, Ahtila Pekka, Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill, 10.1016/j.apenergy.2011.11.040
  75. Szargut, Exergy Analysis of Thermal, Chemical, and Metallurgical Processes (1988)
  76. Gemci T., Öztürk A., Exergy analysis of a sulphide-pulp preparation process in the pulp and paper industry, 10.1016/s0196-8904(98)00069-7
  77. Brown David, Maréchal François, Paris Jean, A dual representation for targeting process retrofit, application to a pulp and paper process, 10.1016/j.applthermaleng.2004.07.024
  78. Al-Ghandoor A., Phelan P.E., Villalobos R., Jaber J.O., Energy and exergy utilizations of the U.S. manufacturing sector, 10.1016/j.energy.2010.03.046
  79. Mostajeran Goortani B., Mateos-Espejel E., Moshkelani M., Paris J., Energy efficiency improvement of a Kraft process through practical stack gases heat recovery, 10.1016/j.applthermaleng.2011.08.016
  80. Jönsson Johanna, Berntsson Thore, Analysing the potential for implementation of CCS within the European pulp and paper industry, 10.1016/j.energy.2012.05.028
  81. Aldrich Remei, Llauró F. Xavier, Puig Josep, Mutjé Pere, Pèlach M. Àngels, Allocation of GHG emissions in combined heat and power systems: a new proposal for considering inefficiencies of the system, 10.1016/j.jclepro.2011.02.014
  82. Cortés E., Rivera W., Exergetic and exergoeconomic optimization of a cogeneration pulp and paper mill plant including the use of a heat transformer, 10.1016/j.energy.2009.11.011
  83. Gong Mei, Exergy analysis of a pulp and paper mill, 10.1002/er.1041
  84. Hong Gui-Bing, Ma Chih-Ming, Chen Hua-Wei, Chuang Kai-Jen, Chang Chang-Tang, Su Te-Li, Energy flow analysis in pulp and paper industry, 10.1016/j.energy.2011.02.051
  85. Mateos-Espejel Enrique, Savulescu Luciana, Maréchal François, Paris Jean, Base case process development for energy efficiency improvement, application to a Kraft pulping mill. Part II: Benchmarking analysis, 10.1016/j.cherd.2010.09.013
  86. Fleiter Tobias, Fehrenbach Daniel, Worrell Ernst, Eichhammer Wolfgang, Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials, 10.1016/j.energy.2012.02.025
  87. Thollander Patrik, Ottosson Mikael, Energy management practices in Swedish energy-intensive industries, 10.1016/j.jclepro.2010.04.011
  88. de Beer Jeroen, Worrell Ernst, Blok Kornelis, FUTURE TECHNOLOGIES FOR ENERGY-EFFICIENT IRON AND STEEL MAKING, 10.1146/annurev.energy.23.1.123
  89. Yellishetty Mohan, Ranjith P.G., Tharumarajah A., Iron ore and steel production trends and material flows in the world: Is this really sustainable?, 10.1016/j.resconrec.2010.03.003
  90. Bisio G., Exergy method for efficient energy resource use in the steel industry, 10.1016/0360-5442(93)90007-z
  91. Nogami Hiroshi, Yagi Jun-ichiro, Kitamura Shin-ya, Austin Peter Richard, Analysis on Material and Energy Balances of Ironmaking Systems on Blast Furnace Operations with Metallic Charging, Top Gas Recycling and Natural Gas Injection, 10.2355/isijinternational.46.1759
  92. ZHANG Li-hua, WU Li-jun, ZHANG Xiao-hong, JU Gui-dong, Comparison and Optimization of Mid-low Temperature Cogeneration Systems for Flue Gas in Iron and Steel Plants, 10.1016/s1006-706x(13)60193-4
  93. Çamdali Ünal, Tunç Murat, Computation of Chemical Exergy Potential in an Industrial AC Electric ARC Furnace, 10.1115/1.1819320
  94. Akiyama Tomohiro, Sato Hirotaka, Muramatsu Atsushi, Yagi Jun-ichiro, Feasibility Study on Blast Furnace Ironmaking System Integrated with Methanol Synthesis for Reduction of Carbon Dioxide Emission and Effective Use of Exergy., 10.2355/isijinternational.33.1136
  95. Petela R, Hutny W, Price J.T, Energy and exergy consumption and CO2 emissions in an ironmaking process, 10.1016/s1093-0191(01)00118-6
  96. Akiyama Tomohiro, Yagi Jun-ichiro, Methodology to Evaluate Reduction Limit of Carbon Dioxide Emission and Minimum Exergy Consumption for Ironmaking., 10.2355/isijinternational.38.896
  97. Mert Mehmet Selçuk, Dilmaç Ömer Faruk, Özkan Semra, Karaca Fatma, Bolat Esen, Exergoeconomic analysis of a cogeneration plant in an iron and steel factory, 10.1016/j.energy.2012.03.046
  98. Romão Inês, Nduagu Experience, Fagerlund Johan, Gando-Ferreira Licínio M., Zevenhoven Ron, CO2 fixation using magnesium silicate minerals. Part 2: Energy efficiency and integration with iron-and steelmaking, 10.1016/j.energy.2011.08.026
  99. Shigaki Nobuyuki, Akiyama Tomohiro, Tsukihashi Fumitaka, Exergy Analysis of Steel Production Processes, 10.2320/matertrans.43.379
  100. Yetisken Y., Camdali U., Ekmekci I., Cost and exergy analysis for optimization of charging materials for steelmaking in EAF and LF as a system*, 10.1007/s11015-013-9742-9
  101. Grip Carl-Erik, Larsson Mikael, Harvey Simon, Nilsson Leif, Process integration. Tests and application of different tools on an integrated steelmaking site, 10.1016/j.applthermaleng.2012.03.040
  102. WANG Hui-tao, WANG Hua, ZHANG Zhu-ming, Optimization of Low-Temperature Exhaust Gas Waste Heat Fueled Organic Rankine Cycle, 10.1016/s1006-706x(12)60123-x
  103. Nduagu Experience, Fagerlund Johan, Zevenhoven Ron, Contribution of iron to the energetics of CO2 sequestration in Mg–silicates-based rock, 10.1016/j.enconman.2011.10.023
  104. Kadrolkar Ameya, Roy S. K., Sen P. K., Minimization of Exergy Losses in the COREX Process, 10.1007/s11663-011-9586-2
  105. SUN Wen-qiang, CAI Jiu-ju, DU Tao, ZHANG Da-wei, Specific Energy Consumption Analysis Model and Its Application in Typical Steel Manufacturing Process, 10.1016/s1006-706x(10)60180-x
  106. Ziębik Andrzej, Stanek Wojciech, Influence of blast-furnace process thermal parameters on energy and exergy characteristics and exergy losses, 10.1002/er.1127
  107. Costa Márcio Macedo, Schaeffer Roberto, Worrell Ernst, Exergy accounting of energy and materials flows in steel production systems, 10.1016/s0360-5442(01)00004-4
  108. Çamdali Ünal, Tunç Murat, Dikeç Feridun, A thermodynamic analysis of a steel production step carried out in the ladle furnace, 10.1016/s1359-4311(00)00076-4
  109. Çamdali Ünal, Tunç Murat, Karakaş Ahmet, Second law analysis of thermodynamics in the electric arc furnace at a steel producing company, 10.1016/s0196-8904(02)00086-9