User menu

Normalized solutions of nonlinear Schrödinger equations

Bibliographic reference Bartsch, Thomas ; de Valeriola, Sébastien. Normalized solutions of nonlinear Schrödinger equations. In: Archiv der Mathematik, Vol. 100, no.1, p. 75-83 (2012)
Permanent URL
  1. T. Bartsch, Topological methods for variational problems with symmetries, Lecture Notes in Mathematics 1560, Springer-Verlag, Berlin 1993.
  2. Bartsch Thomas, Infinitely many solutions of a symmetric Dirichlet problem, 10.1016/0362-546x(93)90151-h
  3. Berestycki H, Lions P.-L: Nonlinear scalar field equations I. Arch. Rat. Mech. Anal. 82, 313–345 (1983)
  4. Berestycki H, Lions P.-L: Nonlinear scalar field equations, II. Arch. Rat. Mech. Anal. 82, 347–375 (1983)
  5. Conner P. E., Floyd E. E., Fixed point free involutions and equivariant maps. II, 10.1090/s0002-9947-1962-0143208-6
  6. Fadell Edward R, Rabinowitz Paul H, Bifurcation for odd potential operators and an alternative topological index, 10.1016/0022-1236(77)90015-5
  7. Hajaiej H., Stuart C.A., Existence and non-existence of Schwarz symmetric ground states for elliptic eigenvalue problems, 10.1007/s10231-004-0114-8
  8. Hirata J, Ikoma N, Tanaka K: Nonlinear scalar field equations in $${\mathbb{R}^N}$$ : mountain pass and symmetric mountain pass approaches, Top. Meth. Nonlin. Anal. 35, 253–276 (2010)
  9. Jeanjean L.: Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlin. Anal. 28, 1633–1659 (1997)
  10. Emergent Nonlinear Phenomena in Bose-Einstein Condensates, ISBN:9783540735908, 10.1007/978-3-540-73591-5
  11. P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math. 65, Amer. Math. Soc., Providence 1986.
  12. Willem Michel, Minimax Theorems, ISBN:9781461286738, 10.1007/978-1-4612-4146-1