User menu

High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability

Bibliographic reference Armiento, R. ; Kozinsky, B. ; Hautier, Geoffroy ; Fornari, M. ; Ceder, G.. High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability. In: Physical review. B, Condensed matter and materials physics, Vol. 89, no. 13, p. 134103 (2014)
Permanent URL http://hdl.handle.net/2078.1/145934
  1. Uchino Kenji, Ferroelectric Devices 2nd Edition, ISBN:9781439803752, 10.1201/b15852
  2. JAFFE HANS, Piezoelectric Ceramics, 10.1111/j.1151-2916.1958.tb12903.x
  3. Uchino Kenji, Piezoelectric Actuators and Ultrasonic Motors, ISBN:9781461286387, 10.1007/978-1-4613-1463-9
  4. Noheda B., Cox D. E., Shirane G., Gonzalo J. A., Cross L. E., Park S-E., A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution, 10.1063/1.123756
  5. Jaffe B., Roth R. S., Marzullo S., Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics, 10.1063/1.1721741
  6. Shirane Gen, Suzuki Kazuo, Takeda Akitsu, Phase Transitions in Solid Solutions of PbZrO3and PbTiO3(II) X-ray Study, 10.1143/jpsj.7.12
  7. Shirane Gen, Suzuki Kazuo, Crystal Structure of Pb(Zr-Ti)O3, 10.1143/jpsj.7.333
  8. B. Aurivillius, Ark. Kemi, 1, 499 (1949)
  9. Wood E. A., Polymorphism in potassium niobate, sodium niobate, and otherABO3compounds, 10.1107/s0365110x51001112
  10. JAEGER R. E., EGERTON L., Hot Pressing of Potassium-Sodium Niobates, 10.1111/j.1151-2916.1962.tb11127.x
  11. DUNGAN R. H., GOLDING R. D., Polarization of NaNbO3-KNbO3 Ceramic Solid Solutions, 10.1111/j.1151-2916.1965.tb14682.x
  12. HAERTLING G. H., Properties of Hot-Pressed Ferroelectric Alkali Niobate Ceramics, 10.1111/j.1151-2916.1967.tb15121.x
  13. L. Egerton, Ceram. Bull., 47, 1151 (1968)
  14. Haertling Gene H., Ferroelectric Ceramics: History and Technology, 10.1111/j.1151-2916.1999.tb01840.x
  15. Takenaka Tadashi, Nagata Hajime, Present Status of Non-Lead-Based Piezoelectric Ceramics, 10.4028/www.scientific.net/kem.157-158.57
  16. Buhrer Carl F., Some Properties of Bismuth Perovskites, 10.1063/1.1732613
  17. NITTA TSUNEHARU, Properties of Sodium-Lithium Niobate Solid Solution Ceramics with Small Lithium Concentrations, 10.1111/j.1151-2916.1968.tb12633.x
  18. Scott B.A., Giess E.A., Burns G., O'Kane D.F., Alkali-rare earth niobates with the tungsten bronze-type structure, 10.1016/0025-5408(68)90100-1
  19. Saito Yasuyoshi, Takao Hisaaki, Tani Toshihiko, Nonoyama Tatsuhiko, Takatori Kazumasa, Homma Takahiko, Nagaya Toshiatsu, Nakamura Masaya, Lead-free piezoceramics, 10.1038/nature03028
  20. Liu Wenfeng, Ren Xiaobing, Large Piezoelectric Effect in Pb-Free Ceramics, 10.1103/physrevlett.103.257602
  21. Matsumoto Kenji, Hiruma Yuji, Nagata Hajime, Takenaka Tadashi, Piezoelectric Properties of Pure and Mn-doped Potassium Niobate Ferroelectric Ceramics, 10.1143/jjap.45.4479
  22. Liu Laijun, Fan Huiqing, Fang Liang, Chen Xiuli, Dammak Hichem, Thi Mai Pham, Effects of Na/K evaporation on electrical properties and intrinsic defects in Na0.5K0.5NbO3 ceramics, 10.1016/j.matchemphys.2009.05.024
  23. Curtarolo Stefano, Morgan Dane, Persson Kristin, Rodgers John, Ceder Gerbrand, Predicting Crystal Structures with Data Mining of Quantum Calculations, 10.1103/physrevlett.91.135503
  24. Greeley Jeff, Jaramillo Thomas F., Bonde Jacob, Chorkendorff Ib, Nørskov Jens K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, 10.1038/nmat1752
  25. Ortiz C., Eriksson O., Klintenberg M., Data mining and accelerated electronic structure theory as a tool in the search for new functional materials, 10.1016/j.commatsci.2008.07.016
  26. Gavartin Jacob, Sarwar Misbah, Papageorgopoulos Dimitrios, Gunn David, Garcia Sonia, Perlov Alexander, Krzystala Arek, Ormsby Dan L., Thompsett David, Goldbeck-Wood Gerhard, Andersen Amity, French Sam, Exploring Fuel Cell Cathode Materials: A High Throughput Calculation Approach, 10.1149/1.3210689
  27. Munter T R, Landis D D, Abild-Pedersen F, Jones G, Wang S, Bligaard T, Virtual materials design using databases of calculated materials properties, 10.1088/1749-4699/2/1/015006
  28. Norskov J. K., Abild-Pedersen F., Studt F., Bligaard T., Density functional theory in surface chemistry and catalysis, 10.1073/pnas.1006652108
  29. Jain Anubhav, Hautier Geoffroy, Moore Charles J., Ping Ong Shyue, Fischer Christopher C., Mueller Tim, Persson Kristin A., Ceder Gerbrand, A high-throughput infrastructure for density functional theory calculations, 10.1016/j.commatsci.2011.02.023
  30. Curtarolo Stefano, Setyawan Wahyu, Hart Gus L.W., Jahnatek Michal, Chepulskii Roman V., Taylor Richard H., Wang Shidong, Xue Junkai, Yang Kesong, Levy Ohad, Mehl Michael J., Stokes Harold T., Demchenko Denis O., Morgan Dane, AFLOW: An automatic framework for high-throughput materials discovery, 10.1016/j.commatsci.2012.02.005
  31. Curtarolo Stefano, Setyawan Wahyu, Wang Shidong, Xue Junkai, Yang Kesong, Taylor Richard H., Nelson Lance J., Hart Gus L.W., Sanvito Stefano, Buongiorno-Nardelli Marco, Mingo Natalio, Levy Ohad, AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations, 10.1016/j.commatsci.2012.02.002
  32. Bennett Joseph W., Garrity Kevin F., Rabe Karin M., Vanderbilt David, HexagonalABCSemiconductors as Ferroelectrics, 10.1103/physrevlett.109.167602
  33. Roy Anindya, Bennett Joseph W., Rabe Karin M., Vanderbilt David, Half-Heusler Semiconductors as Piezoelectrics, 10.1103/physrevlett.109.037602
  34. Bennett Joseph W., Rabe Karin M., Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations, 10.1016/j.jssc.2012.05.013
  35. Curtarolo Stefano, Hart Gus L. W., Nardelli Marco Buongiorno, Mingo Natalio, Sanvito Stefano, Levy Ohad, The high-throughput highway to computational materials design, 10.1038/nmat3568
  36. Kirklin Scott, Meredig Bryce, Wolverton Chris, High-Throughput Computational Screening of New Li-Ion Battery Anode Materials, 10.1002/aenm.201200593
  37. Klintenberg M., Eriksson O., Possible high-temperature superconductors predicted from electronic structure and data-filtering algorithms, 10.1016/j.commatsci.2012.08.038
  38. King-Smith R. D., Vanderbilt David, First-principles investigation of ferroelectricity in perovskite compounds, 10.1103/physrevb.49.5828
  39. Park Seung-Eek, Shrout Thomas R., Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, 10.1063/1.365983
  40. Cohen Ronald E., Fu Huaxiang, 10.1038/35002022
  41. Groth P., Ueber Beziehungen zwischen Krystallform und chemische Constitution bei einigen organischen Verbindungen, 10.1002/andp.18702170904
  42. Goldschmidt V. M., Crystal structure and chemical constitution, 10.1039/tf9292500253
  43. Bellaiche L., García Alberto, Vanderbilt David, Finite-Temperature Properties ofPb(Zr1−xTix)O3Alloys from First Principles, 10.1103/physrevlett.84.5427
  44. Armiento Rickard, Kozinsky Boris, Fornari Marco, Ceder Gerbrand, Screening for high-performance piezoelectrics using high-throughput density functional theory, 10.1103/physrevb.84.014103
  45. Momma Koichi, Izumi Fujio, VESTA: a three-dimensional visualization system for electronic and structural analysis, 10.1107/s0021889808012016
  46. Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
  47. Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
  48. Cohen Ronald E., Origin of ferroelectricity in perovskite oxides, 10.1038/358136a0
  49. Zhong W., Vanderbilt David, Rabe K. M., Phase Transitions in BaTiO3from First Principles, 10.1103/physrevlett.73.1861
  50. Zhong W., Vanderbilt David, Competing Structural Instabilities in Cubic Perovskites, 10.1103/physrevlett.74.2587
  51. García Alberto, Vanderbilt David, First-principles study of stability and vibrational properties of tetragonalPbTiO3, 10.1103/physrevb.54.3817
  52. Waghmare U. V., Rabe K. M., Ab initio statistical mechanics of the ferroelectric phase transition inPbTiO3, 10.1103/physrevb.55.6161
  53. Rabe K. M., Cockayne E., Temperature-dependent dielectric and piezoelectric response of ferroelectrics from first principles, 10.1063/1.56281
  54. Ghosez Ph., Cockayne E., Waghmare U. V., Rabe K. M., Lattice dynamics ofBaTiO3,PbTiO3, andPbZrO3: A comparative first-principles study, 10.1103/physrevb.60.836
  55. Ghita M., Fornari M., Singh D. J., Halilov S. V., Interplay betweenA-site andB-site driven instabilities in perovskites, 10.1103/physrevb.72.054114
  56. Blöchl P. E., Projector augmented-wave method, 10.1103/physrevb.50.17953
  57. Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, 10.1103/physrevb.59.1758
  58. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
  59. Vegard L., Die Konstitution der Mischkristalle und die Raumf�llung der Atome, 10.1007/bf01349680
  60. Ping Ong Shyue, Wang Lei, Kang Byoungwoo, Ceder Gerbrand, Li−Fe−P−O2Phase Diagram from First Principles Calculations, 10.1021/cm702327g
  61. Hautier Geoffroy, Ong Shyue Ping, Jain Anubhav, Moore Charles J., Ceder Gerbrand, Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability, 10.1103/physrevb.85.155208
  62. Hautier Geoffroy, Fischer Christopher C., Jain Anubhav, Mueller Tim, Ceder Gerbrand, Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory, 10.1021/cm100795d
  63. Singh David J., Structure and energetics of antiferroelectricPbZrO3, 10.1103/physrevb.52.12559
  64. Bilc D. I., Singh D. J., Frustration of Tilts andA-Site Driven Ferroelectricity inKNbO3−LiNbO3Alloys, 10.1103/physrevlett.96.147602
  65. Goldschmidt V. M., Die Gesetze der Krystallochemie, 10.1007/bf01507527
  66. M. F. M. Taib, Materials with Complex Behaviour II (2012)
  67. Parker William D., Rondinelli James M., Nakhmanson S. M., First-principles study of misfit strain-stabilized ferroelectric SnTiO3, 10.1103/physrevb.84.245126
  68. Suzuki Shoichiro, Takeda Toshikazu, Ando Akira, Takagi Hiroshi, Ferroelectric phase transition in Sn2+ ions doped (Ba,Ca)TiO3 ceramics, 10.1063/1.3367733
  69. Fix Thomas, Sahonta S.-Lata, Garcia Vincent, MacManus-Driscoll Judith L., Blamire Mark G., Structural and Dielectric Properties of SnTiO3, a Putative Ferroelectric, 10.1021/cg200333q