User menu

Polyunsaturated fatty acid metabolism in enterocyte models: T84 cell line vs. Caco-2 cell line

Bibliographic reference Beguin, Pauline ; Schneider, Anne-Catherine ; Mignolet, Eric ; Schneider, Yves-Jacques ; Larondelle, Yvan. Polyunsaturated fatty acid metabolism in enterocyte models: T84 cell line vs. Caco-2 cell line. In: In Vitro Cellular & Developmental Biology - Animal, Vol. 50, no. 2, p. 111-120 (february 2014)
Permanent URL
  1. Alessandri JM, Arfi TS, Thieulin C., La muqueuse de l'intestin grêle : évolution de la composition en lipides cellulaires au cours de la différenciation entérocytaire et de la maturation postnatale, 10.1051/rnd:19900501
  2. ALESSANDRI J, JOANNIE J, DURAND G, Polyunsaturated fatty acids as differentiation markers of rat jejunal epithelial cells: a modeling approach☆☆☆, 10.1016/0955-2863(93)90007-j
  3. Arterburn L. M.; Hall E. B.; Oken H. Distribution, interconversion, and dose response of n − 3 fatty acids in humans. Am. J. Clin. Nutr. 83: S1467–1476S; 2006.
  4. Barceló-Coblijn Gwendolyn, Murphy Eric J., Alpha-linolenic acid and its conversion to longer chain n−3 fatty acids: Benefits for human health and a role in maintaining tissue n−3 fatty acid levels, 10.1016/j.plipres.2009.07.002
  5. Bernet-Camard M F, Coconnier M H, Hudault S, Servin A L, Differential expression of complement proteins and regulatory decay accelerating factor in relation to differentiation of cultured human colon adenocarcinoma cell lines., 10.1136/gut.38.2.248
  7. Bolte Gabriele, Wolburg Hartwig, Beuermann Karin, Stocker Silke, Stern Martin, Specific interaction of food proteins with apical membranes of the human intestinal cell lines Caco-2 and T84, 10.1016/s0009-8981(97)00218-0
  8. Brenner R. R.; Peluffo R. O. Effect of saturated and unsaturated fatty acids on the desaturation in vitro of palmitic, stearic, oleic, linoleic, and linolenic acids. J. Biol. Chem. 241: 5213–5219; 1966.
  9. Brossard N.; Croset M.; Pachiaudi C.; Riou J. P.; Tayot J. L.; Lagarde M. Retroconversion and metabolism of [13C]22:6n-3 in humans and rats after intake of a single dose of [13C]22:6n-3-triacylglycerols. Am. J. Clin. Nutr. 64: 577–586; 1996.
  10. Cencič Avrelija, Langerholc Tomaž, Functional cell models of the gut and their applications in food microbiology — A review, 10.1016/j.ijfoodmicro.2010.03.026
  11. Chantret I.; Barbat A.; Dussaulx E.; Brattain M. G.; Zweibaum A. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 48: 1936–1942; 1988.
  12. Chen Qi, Nilsson Åke, Desaturation and chain elongation of n − 3 and n − 6 polyunsaturated fatty acids in the human CaCo-2 cell line, 10.1016/0005-2760(93)90097-s
  13. Chen Q.; Nilsson A. Interconversion of alpha-linolenic acid in rat intestinal mucosa: studies in vivo and in isolated villus and crypt cells. J. Lipid Res. 35: 601–609; 1994.
  14. Conquer Julie A., Holub Bruce J., Dietary docosahexaenoic acid as a source of eicosapentaenoic acid in vegetarians and omnivores, 10.1007/s11745-997-0043-y
  15. Dang Van Q.C., Focant M., Mignolet E., Turu C., Froidmont E., Larondelle Y., Influence of the diet structure on ruminal biohydrogenation and milk fatty acid composition of cows fed extruded linseed, 10.1016/j.anifeedsci.2011.05.002
  16. Dharmsathaphorn K.; McRoberts J. A.; Mandel K. G.; Tisdale L. D.; Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am. J. Physiol. Gastrointest. Liver Physiol. 246: G204–G208; 1984.
  17. Dias V. C.; Parsons H. G. Modulation in delta 9, delta 6, and delta 5 fatty acid desaturase activity in the human intestinal CaCo-2 cell line. J. Lipid Res. 36: 552–563; 1995.
  18. Garg Manohar L., Keelan Monika, Thomson Alan B.R., Clandinin M.Thomas, Fatty acid desaturation in the intestinal mucosa, 10.1016/0005-2760(88)90256-1
  19. Ghoshal Sarbani, Witta Jassir, Zhong Jian, de Villiers Willem, Eckhardt Erik, Chylomicrons promote intestinal absorption of lipopolysaccharides, 10.1194/jlr.m800156-jlr200
  20. Grønn Morten, Christensen Erik, Hagve Tor-Arne, Christophersen Bjørn O., Peroxisomal retroconversion of docosahexaenoic acid (22:6(n−3)) to eicosapentaenoic acid (20:5(n−3)) studied in isolated rat liver cells, 10.1016/0005-2760(91)90254-f
  21. Huang Yung-Sheng, Liu Jim-Wen, Koba Kazunori, Anderson Steven N., N-3 and n-6 fatty acid metabolism in undifferentiated and differentiated human intestine cell line (Caco-2), 10.1007/bf01322334
  22. Hughes T. E.; Sasak W. V.; Ordovas J. M.; Forte T. M.; Lamon-Fava S.; Schaefer E. J. A novel cell line (Caco-2) for the study of intestinal lipoprotein synthesis. J. Biol. Chem. 262: 3762–3767; 1987.
  23. Karam Sherif, M., Lineage commitment and maturation of epithelial cells in the gut, 10.2741/karam
  24. Kaur Gunveen, Begg Denovan P., Barr Daniel, Garg Manohar, Cameron-Smith David, Sinclair Andrew J., Short-term docosapentaenoic acid (22 : 5 n-3) supplementation increases tissue docosapentaenoic acid, DHA and EPA concentrations in rats, 10.1017/s0007114509991334
  25. Li Qiurong, Zhang Qiang, Wang Meng, Zhao Sumin, Xu Guowang, Li Jieshou, n-3 polyunsaturated fatty acids prevent disruption of epithelial barrier function induced by proinflammatory cytokines, 10.1016/j.molimm.2007.09.003
  26. Madara James L., Stafford Joan, Dharmsathaphorn Kiertisin, Carlson Susan, Structural Analysis of a Human Intestinal Epithelial Cell Line, 10.1016/s0016-5085(87)91069-9
  27. Pageot Louis-Philippe, Perreault Nathalie, Basora Nuria, Francoeur Caroline, Magny Pierre, Beaulieu Jean-Fran�ois, Human cell models to study small intestinal functions: Recapitulation of the crypt-villus axis, 10.1002/(sici)1097-0029(20000515)49:4<394::aid-jemt8>;2-k
  28. Pinto M.; Robine Leon S.; Appay M. D. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47: 323–330; 1983.
  29. Quaroni A., Hochman J., Development of intestinal cell culture models for drug transport and metabolism studies, 10.1016/s0169-409x(96)00413-9
  30. Ranaldi Giulia, Consalvo Rosa, Sambuy Yula, Scarino Maria Laura, Permeability characteristics of parental and clonal human intestinal Caco-2 cell lines differentiated in serum-supplemented and serum-free media, 10.1016/s0887-2333(03)00095-x
  31. Ranheim T.; Gedde-Dahl A.; Rustan A. C.; Drevon C. A. Influence of eicosapentaenoic acid (20:5, n-3) on secretion of lipoproteins in CaCo-2 cells. J. Lipid Res 33: 1281–1293; 1992.
  32. Bénédicte Renaville, Mullen Anne, Moloney Fiona, Larondelle Yvan, Schneider Yves-Jacques, Roche Helen M., Eicosapentaenoic acid and 3,10 dithia stearic acid inhibit the desaturation of trans-vaccenic acid into cis-9, trans-11-conjugated linoleic acid through different pathways in Caco-2 and T84 cells, 10.1079/bjn20061717
  33. Russo Gian Luigi, Dietary n−6 and n−3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention, 10.1016/j.bcp.2008.10.020
  34. Schneider Anne-Catherine, Beguin Pauline, Bourez Sophie, Perfield James W., Mignolet Eric, Debier Cathy, Schneider Yves-Jacques, Larondelle Yvan, Conversion of t11t13 CLA into c9t11 CLA in Caco-2 Cells and Inhibition by Sterculic Oil, 10.1371/journal.pone.0032824
  35. Sprecher Howard, Metabolism of highly unsaturated n-3 and n-6 fatty acids, 10.1016/s1388-1981(00)00077-9
  36. Stark K. D.; Holub B. J. Differential eicosapentaenoic acid elevations and altered cardiovascular disease risk factor responses after supplementation with docosahexaenoic acid in postmenopausal women receiving and not receiving hormone replacement therapy. Am. J. Clin. Nutr. 79: 765–773; 2004.
  37. Tocher D.R., Dick J.R., Effects of essential fatty acid deficiency and supplementation with docosahexaenoic acid (DHA; 22:6n-3) on cellular fatty acid compositions and fatty acyl desaturation in a cell culture model, 10.1054/plef.2000.0233
  38. von Schacky C, Weber P C, Metabolism and effects on platelet function of the purified eicosapentaenoic and docosahexaenoic acids in humans., 10.1172/jci112261
  39. Voss A.; Reinhart M.; Sankarappa S.; Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Biol. Chem. 266: 19995–20000; 1991.