User menu

Lipid-destabilizing properties of the hydrophobic helices H8 and H9 from colicin E1

Bibliographic reference Lins, L. ; El Kirat, K. ; Charloteaux, B. ; Flore, C. ; Stroobant, V. ; et. al. Lipid-destabilizing properties of the hydrophobic helices H8 and H9 from colicin E1. In: Molecular Membrane Biology, Vol. 24, no.5-6, p. 419-430 (2007)
Permanent URL
  1. Lazdunski Claude J., Pore-forming colicins: synthesis, extracellular release, mode of action, immunity, 10.1016/0300-9084(88)90197-6
  2. Baty D., Frenette M., Lioubès R., Geli V., Howard S. P., Pattus F., Lazdunski C., Functional domains of colicin A, 10.1111/j.1365-2958.1988.tb00092.x
  3. Zakharov Stanislav D, Cramer William A, Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes, 10.1016/s0005-2736(02)00579-5
  4. Bullock JO, J Biol Chem, 258, 9908 (1983)
  5. Zakharov Stanislav D., Lindeberg Magdalen, Cramer William A., Kinetic Description of Structural Changes Linked to Membrane Import of the Colicin E1 Channel Protein†, 10.1021/bi9903087
  6. Cramer W.A., Dankert J.R., Uratani Y., The membrane channel-forming bacteriocidal protein, colicin El, 10.1016/0304-4157(83)90016-3
  7. Cleveland M. V., Slatin S., Finkelstein A., Levinthal C., Structure-function relationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin E1., 10.1073/pnas.80.12.3706
  8. Zakharov S. D., Lindeberg M., Griko Y., Salamon Z., Tollin G., Prendergast F. G., Cramer W. A., Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array, 10.1073/pnas.95.8.4282
  9. Zakharov S.D., Cramer W.A., Insertion intermediates of pore-forming colicins in membrane two-dimensional space, 10.1016/s0300-9084(02)01453-0
  10. Kim Yongae, Valentine Kathleen, Opella Stanley J., Schendel Sharon L., Cramer William A., Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers, 10.1002/pro.5560070214
  11. Elkins Patricia, Bunker Amy, Cramer William A, Stauffacher Cynthia V, A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1, 10.1016/s0969-2126(97)00200-1
  12. Tory Monica C., Merrill A. Rod, Adventures in Membrane Protein Topology : A STUDY OF THE MEMBRANE-BOUND STATE OF COLICIN E1, 10.1074/jbc.274.35.24539
  13. Tory Monica C, Rod Merrill A, Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide, 10.1016/s0005-2736(02)00493-5
  14. Sobko Alexander A., Kotova Elena A., Antonenko Yuri N., Zakharov Stanislav D., Cramer William A., Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore, 10.1016/j.febslet.2004.09.016
  15. Brasseur Robert, Tilted peptides: a motif for membrane destabilization (Hypothesis), 10.1080/096876800294461
  16. Brasseur R, Peptides in membranes: tipping the balance of membrane stability, 10.1016/s0968-0004(97)01047-5
  17. Horth M, Embo J, 10, 2747 (1991)
  18. Rahman Mehdi, Lins Laurence, Thomas-Soumarmon Annick, Brasseur Robert, Are Amphipathic Asymmetric Peptides Ubiquitous Structures for Membrane Destabilisation?, 10.1007/s008940050032
  19. Lins L., Charloteaux B., Thomas A., Brasseur R., Computational study of lipid-destabilizing protein fragments: Towards a comprehensive view of tilted peptides, 10.1002/prot.1109
  20. Talmud Philippa, Lins Laurence, Brasseur Robert, Prediction of signal peptide functional properties: a study of the orientation and angle of insertion of yeast invertase mutants and human apolipoprotein B signal peptide variants, 10.1093/protein/9.4.317
  21. Lambert Gilles, Decout Anne, Vanloo Berlinda, Rouy Didier, Duverger Nicolas, Kalopissis Athina, Vandekerckhove Joel, Chambaz Jean, Brasseur Robert, Rosseneu Maryvonne, The C-terminal helix of human apolipoprotein AII promotes the fusion of unilamellar liposomes and displaces apolipoprotein AI from high-density lipoproteins, 10.1046/j.1432-1327.1998.2530328.x
  22. Martin I, J Virol, 68, 1139 (1994)
  23. Martin I., Defrise-Quertain F., Mandieau V., Nielsen N.M., Saermark T., Burny A., Brasseur R., Ruysschaert J-M., Vandenbranden M., Fusogenic activity of SIV (Simian Immunodeficiency Virus) peptides located in the GP32 NH2 terminal domain, 10.1016/0006-291x(91)91646-t
  24. Perez-Mendez Oscar, Vanloo Berlinda, Decout Anne, Goethals Marc, Peelman Frank, Vandekerckhove Joel, Brasseur Robert, Rosseneu Maryvonne, Contribution of the hydrophobicity gradient of an amphipathic peptide to its mode of association with lipids, 10.1046/j.1432-1327.1998.2560570.x
  25. Lins L., Flore C., Chapelle L., Talmud P.J., Thomas A., Brasseur R., Lipid-interacting properties of the N-terminal domain of human apolipoprotein C-III, 10.1093/protein/15.6.513
  26. Bradshaw Jeremy P., Darkes Malcolm J. M., Harroun Thad A., Katsaras John, Epand Richard M., Oblique Membrane Insertion of Viral Fusion Peptide Probed by Neutron Diffraction†, 10.1021/bi000224u
  27. Han Xing, Bushweller John H., Cafiso David S., Tamm Lukas K., 10.1038/90434
  28. Ducarme Ph., Rahman M., Brasseur R., IMPALA: A simple restraint field to simulate the biological membrane in molecular structure studies, 10.1002/(sici)1097-0134(19980301)30:4<357::aid-prot3>;2-g
  29. Vogt Bas, Ducarme Philippe, Schinzel Susan, Brasseur Robert, Bechinger Burkhard, The Topology of Lysine-Containing Amphipathic Peptides in Bilayers by Circular Dichroism, Solid-State NMR, and Molecular Modeling, 10.1016/s0006-3495(00)76503-9
  30. Lins L., Charloteaux B., Heinen C., Thomas A., Brasseur R., “De Novo” Design of Peptides with Specific Lipid-Binding Properties, 10.1529/biophysj.105.068213
  31. Brasseur Robert, Simulating the folding of small proteins by use of the local minimum energy and the free solvation energy yields native-like structures, 10.1016/0263-7855(95)00052-6
  32. Mayer L.D., Hope M.J., Cullis P.R., Vesicles of variable sizes produced by a rapid extrusion procedure, 10.1016/0005-2736(86)90302-0
  33. Mrsny Randall J., Volwerk Johannes J., Hayes Griffith O., A simplified procedure for lipid phosphorus analysis shows that digestion rates vary with phospholipid structure, 10.1016/0009-3084(86)90111-8
  34. Ellens Harma, Bentz Joe, Szoka Francis C., Proton- and calcium-induced fusion and destabilization of liposomes, 10.1021/bi00334a005
  35. Kendall DA, J Biol Chem, 257, 13892 (1982)
  36. GOORMAGHTIGH Erik, CABIAUX Veronique, RUYSSCHAERT Jean-Marie, Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films, 10.1111/j.1432-1033.1990.tb19354.x
  37. Goormaghtigh Erik, Raussens Vincent, Ruysschaert Jean-Marie, Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes, 10.1016/s0304-4157(99)00004-0
  38. Giocondi Marie-Cécile, Vié Véronique, Lesniewska Eric, Milhiet Pierre-Emmanuel, Zinke-Allmang Martin, Le Grimellec Christian, Phase Topology and Growth of Single Domains in Lipid Bilayers, 10.1021/la0012135
  39. Reviakine Ilya, Brisson Alain, Formation of Supported Phospholipid Bilayers from Unilamellar Vesicles Investigated by Atomic Force Microscopy, 10.1021/la9903043
  40. Milhiet Pierre-Emmanuel, Giocondi Marie-Cécile, Baghdadi Omid, Ronzon Frédéric, Le Grimellec Christian, Roux Bernard, AFM Detection of GPI Protein Insertion into DOPC/DPPC Model Membranes, 10.1002/1438-5171(200206)3:2/3<135::aid-simo135>;2-o
  41. Berquand A., Mingeot-Leclercq M.-P., Dufrêne Y.F., Real-time imaging of drug–membrane interactions by atomic force microscopy, 10.1016/j.bbamem.2004.05.010
  42. Dufrêne Yves F., Barger William R., Green John-Bruce D., Lee Gil U, Nanometer-Scale Surface Properties of Mixed Phospholipid Monolayers and Bilayers, 10.1021/la970221r
  43. El Kirat Karim, Lins Laurence, Brasseur Robert, Dufrêne Yves F., Fusogenic Tilted Peptides Induce Nanoscale Holes in Supported Phosphatidylcholine Bilayers, 10.1021/la047640q
  44. Rinia Hilde A., Boots Jan-Willem P., Rijkers Dirk T. S., Kik Richard A., Snel Margot M. E., Demel Rudy A., Killian J. Antoinette, van der Eerden Jan P. J. M., de Kruijff Ben, Domain Formation in Phosphatidylcholine Bilayers Containing Transmembrane Peptides:  Specific Effects of Flanking Residues†, 10.1021/bi011796x
  45. Adam B., Lins L., Stroobant V., Thomas A., Brasseur R., Distribution of Hydrophobic Residues Is Crucial for the Fusogenic Properties of the Ebola Virus GP2 Fusion Peptide, 10.1128/jvi.78.4.2131-2136.2004
  46. Tory MC, Biophysical J, 76, A120 (1999)
  47. Sobko A. A., Vigasina M. A., Rokitskaya T. I., Kotova E. A., Zakharov S. D., Cramer W. A., Antonenko Y. N., Chemical and Photochemical Modification of Colicin E1 and Gramicidin A in Bilayer Lipid Membranes, 10.1007/s00232-004-0674-y
  48. Zakharov Stanislav D., Kotova Elena A., Antonenko Yuri N., Cramer William A., On the role of lipid in colicin pore formation, 10.1016/j.bbamem.2004.07.001
  49. Chernomordik Leonid V., Leikina Eugenia, Frolov Vadim, Bronk Peter, Zimmerberg Joshua, An Early Stage of Membrane Fusion Mediated by the Low pH Conformation of Influenza Hemagglutinin Depends upon Membrane Lipids, 10.1083/jcb.136.1.81
  50. Yang L., Observation of a Membrane Fusion Intermediate Structure, 10.1126/science.1074354
  51. Epand Raquel F, Martinou Jean-Claude, Montessuit Sylvie, Epand Richard M, Yip Christopher M, Direct evidence for membrane pore formation by the apoptotic protein Bax, 10.1016/s0006-291x(02)02544-5
  52. Basañez Gorka, Sharpe Juanita C., Galanis Jennifer, Brandt Teresa B., Hardwick J. Marie, Zimmerberg Joshua, Bax-type Apoptotic Proteins Porate Pure Lipid Bilayers through a Mechanism Sensitive to Intrinsic Monolayer Curvature, 10.1074/jbc.m206069200