User menu

Estimation of the Error Density in a Semiparametric Transformation Model

Bibliographic reference Colling, Benjamin ; Heuchenne, Cédric ; Samb, Rawane ; Van Keilegom, Ingrid. Estimation of the Error Density in a Semiparametric Transformation Model. In: Annals of the Institute of Statistical Mathematics, Vol. 67, p. 1-18 (2015)
Permanent URL
  1. Ahmad Ibrahim A., Li Qi, Testing symmetry of an unknown density function by kernel method, 10.1080/10485259708832704
  2. Akritas Michael G., Van Keilegom Ingrid, Non-parametric Estimation of the Residual Distribution, 10.1111/1467-9469.00254
  3. Amemiya, T. (1985). Advanced econometrics. Cambridge: Harvard University Press.
  4. Bickel Peter J., Doksum Kjell A., An Analysis of Transformations Revisited, 10.1080/01621459.1981.10477649
  5. Billingsley, P. (1968). Convergence of probability measures. New York: Wiley.
  6. Box, G. E. P., Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society-Series B, 26, 211–252.
  7. Carroll Raymond J., Ruppert David, Transformation and Weighting in Regression, ISBN:9780412014215, 10.1007/978-1-4899-2873-3
  8. Chen, G., Lockhart, R. A., Stephens, A. (2002). Box-Cox transformations in linear models: Large sample theory and tests of normality. Canadian Journal of Statistics, 30, 177–234 (with discussion).
  9. Cheng Fuxia, Asymptotic distributions of error density and distribution function estimators in nonparametric regression, 10.1016/j.jspi.2003.12.004
  10. Cheng Fuxia, Sun Shuxia, A goodness-of-fit test of the errors in nonlinear autoregressive time series models, 10.1016/j.spl.2007.05.003
  11. Dette Holger, Kusi-Appiah Sorina, Neumeyer Natalie, Testing symmetry in nonparametric regression models, 10.1080/10485250213906
  12. Efromovich Sam, Estimation of the density of regression errors, 10.1214/009053605000000435
  13. Einmahl Uwe, Mason David M., Uniform in bandwidth consistency of kernel-type function estimators, 10.1214/009053605000000129
  14. Escanciano Juan Carlos, Jacho-Chávez David T., -uniformly consistent density estimation in nonparametric regression models, 10.1016/j.jeconom.2011.09.017
  15. Fitzenberger Bernd, Wilke Ralf A., Zhang Xuan, Implementing Box–Cox Quantile Regression, 10.1080/07474930903382166
  16. Horowitz Joel L., Semiparametric Methods in Econometrics, ISBN:9780387984773, 10.1007/978-1-4612-0621-7
  17. Linton Oliver, Sperlich Stefan, Van Keilegom Ingrid, Estimation of a semiparametric transformation model, 10.1214/009053607000000848
  18. Müller Ursula U., Schick Anton, Wefelmeyer Wolfgang, Estimating linear functionals of the error distribution in nonparametric regression, 10.1016/s0378-3758(02)00412-3
  19. Nadaraya E. A., On Estimating Regression, 10.1137/1109020
  20. Neumeyer, N., Dette, H. (2007). Testing for symmetric error distribution in nonparametric regression models. Statistica Sinica, 17, 775–795.
  21. Neumeyer Natalie, Van Keilegom Ingrid, Estimating the error distribution in nonparametric multiple regression with applications to model testing, 10.1016/j.jmva.2010.01.007
  22. Pinsker, M. S. (1980). Optimal filtering of a square integrable signal in Gaussian white noise. Problems of Information Transmission, 16, 52–68.
  23. Sakia R. M., The Box-Cox Transformation Technique: A Review, 10.2307/2348250
  24. Samb, R. (2011). Nonparametric estimation of the density of regression errors. Comptes Rendus de l’Académie des Sciences-Paris, Série I, 349, 1281–1285.
  25. Shin Youngki, Semiparametric estimation of the Box-Cox transformation model, 10.1111/j.1368-423x.2008.00255.x
  26. Vanhems, A., Van Keilegom, I. (2011). Semiparametric transformation model with endogeneity: A control function approach. Journal of Econometrics (under revision).
  27. Watson, G. S. (1964). Smooth regression analysis. Sankhy $$\overline{a}$$ a ¯ -Series A, 26, 359–372.
  28. Zellner A., Revankar N. S., Generalized Production Functions, 10.2307/2296840