User menu

Partial symmetry of vector solutions for elliptic systems

Bibliographic reference Wang, Zhi-Qiang ; Willem, Michel. Partial symmetry of vector solutions for elliptic systems. In: Journal d'Analyse Mathematique, Vol. 122, no. 1, p. 69-85 (2014)
Permanent URL http://hdl.handle.net/2078.1/142605
  1. Akhmediev Nail, Ankiewicz Adrian, Partially Coherent Solitons on a Finite Background, 10.1103/physrevlett.82.2661
  2. Ambrosetti Antonio, Colorado Eduardo, Bound and ground states of coupled nonlinear Schrödinger equations, 10.1016/j.crma.2006.01.024
  3. Ambrosetti Antonio, Colorado Eduardo, Standing waves of some coupled nonlinear Schrödinger equations, 10.1112/jlms/jdl020
  4. Bartsch Thomas, Dancer Norman, Wang Zhi-Qiang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, 10.1007/s00526-009-0265-y
  5. T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Partial Differential Equations 19 (2006), 200–207.
  6. Bartsch Thomas, Wang Zhi-Qiang, Wei Juncheng, Bound states for a coupled Schrödinger system, 10.1007/s11784-007-0033-6
  7. Bartsch Thomas, Weth Tobias, Willem Michel, Partial symmetry of least energy nodal solutions to some variational problems, 10.1007/bf02787822
  8. Catrina Florin, Wang Zhi-Qiang, Nonlinear Elliptic Equations on Expanding Symmetric Domains, 10.1006/jdeq.1998.3600
  9. Chen Zhijie, Zou Wenming, Positive Least Energy Solutions and Phase Separation for Coupled Schrödinger Equations with Critical Exponent, 10.1007/s00205-012-0513-8
  10. de Figueiredo Djairo G., Lopes Orlando, Solitary waves for some nonlinear Schrödinger systems, 10.1016/j.anihpc.2006.11.006
  11. Esry B. D., Greene Chris H., Burke, Jr. James P., Bohn John L., Hartree-Fock Theory for Double Condensates, 10.1103/physrevlett.78.3594
  12. Lin Tai-Chia, Wei Juncheng, Ground State of N Coupled Nonlinear Schr�dinger Equations in Rn,n?3, 10.1007/s00220-005-1313-x
  13. Liu Zhaoli, Wang Zhi-Qiang, Multiple Bound States of Nonlinear Schrödinger Systems, 10.1007/s00220-008-0546-x
  14. Z. Liu and Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud. 10 (2010), 175–193.
  15. Mitchell Alison, Cell biology: Explorers deliver tea to the pole, 10.1038/43079
  16. E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc. (JEMS) 10 (2008), 41–71.
  17. Noris Benedetta, Terracini Susanna, Tavares Hugo, Verzini Gianmaria, Uniform Hölder Bounds for Nonlinear Schrödinger Systems with Strong Competition : Uniform Hölder Bounds for NLS Systems, 10.1002/cpa.20309
  18. J. Van Schaftingen and M. Willem, Symmetry of solutions of semilinear elliptic problems, J. Eur. Math. Soc. (JEMS) 10 (2008), 439–456.
  19. Sirakov Boyan, Least Energy Solitary Waves for a System of Nonlinear Schrödinger Equations in $${\mathbb{R}^n}$$, 10.1007/s00220-006-0179-x
  20. Terracini Susanna, Verzini Gianmaria, Multipulse Phases in k-Mixtures of Bose–Einstein Condensates, 10.1007/s00205-008-0172-y
  21. R. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal. 37 (2011), 203–223
  22. Timmermans E., Phase Separation of Bose-Einstein Condensates, 10.1103/physrevlett.81.5718
  23. WEI JUNCHENG, Weth Tobias, Nonradial symmetric bound states for a system of coupled Schrödinger equations, 10.4171/rlm/495
  24. Wei Juncheng, Weth Tobias, Radial Solutions and Phase Separation in a System of Two Coupled Schrödinger Equations, 10.1007/s00205-008-0121-9
  25. Weth Tobias, Symmetry of Solutions to Variational Problems for Nonlinear Elliptic Equations via Reflection Methods, 10.1365/s13291-010-0005-4
  26. J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal. 11 (2012), 1003–1011.
  27. M. Willem, Principes d’analyse fonctionnelle, Cassini, Paris, 2007.