User menu

Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings

Bibliographic reference Donneau, Anne-Françoise ; Mauer, Murielle ; Lambert, Philippe ; Molenberghs, Geert ; Albert, Adelin. Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings. In: Journal of Biopharmaceutical Statistics, Vol. 25, no. 3, p. 570-601 (2015)
Permanent URL http://hdl.handle.net/2078.1/142130
  1. Aaronson N. K., Ahmedzai S., Bergman B., Bullinger M., Cull A., Duez N. J., Filiberti A., Flechtner H., Fleishman S. B., Haes J. C. J. M. d., Kaasa S., Klee M., Osoba D., Razavi D., Rofe P. B., Schraub S., Sneeuw K., Sullivan M., Takeda F., The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument for Use in International Clinical Trials in Oncology, 10.1093/jnci/85.5.365
  2. Ake C., Rounding after multiple imputation with non-binary categorical covariates. Paper presented at SAS Users Group International 2005. Thirtieth Annual Conference (2005)
  3. Allison P., Imputation of categorical variables with PROC MI. Paper presented at SAS Users Group international 2005. Thirtieth Annual Conference (2005)
  4. Bernaards Coen A., Belin Thomas R., Schafer Joseph L., Robustness of a multivariate normal approximation for imputation of incomplete binary data, 10.1002/sim.2619
  5. Beunckens Caroline, Sotto Cristina, Molenberghs Geert, A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data, 10.1016/j.csda.2007.04.020
  6. Carpenter James R., Kenward Michael G., White Ian R., Sensitivity analysis after multiple imputation under missing at random: a weighting approach, 10.1177/0962280206075303
  7. Demirtas Hakan, Freels Sally A., Yucel Recai M., Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: a simulation assessment, 10.1080/10629360600903866
  8. Donneau A. F., Communications in Statistics – Simulation and Computation (2012)
  9. Goodnight James H., A Tutorial on the SWEEP Operator, 10.1080/00031305.1979.10482685
  10. Graham John W., Olchowski Allison E., Gilreath Tamika D., How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory, 10.1007/s11121-007-0070-9
  11. Horton Nicholas J, Lipsitz Stuart R, Parzen Michael, A Potential for Bias When Rounding in Multiple Imputation, 10.1198/0003130032314
  12. Ibrahim Noor Akma, Suliadi Suliadi, Generating correlated discrete ordinal data using R and SAS IML, 10.1016/j.cmpb.2011.06.003
  13. Lee A.J., Some simple methods for generating correlated categorical variates, 10.1016/s0167-9473(97)00030-3
  14. Lee K. J., Carlin J. B., Multiple Imputation for Missing Data: Fully Conditional Specification Versus Multivariate Normal Imputation, 10.1093/aje/kwp425
  15. LIANG KUNG-YEE, ZEGER SCOTT L., Longitudinal data analysis using generalized linear models, 10.1093/biomet/73.1.13
  16. Lipsitz Stuart R., Kim Kyungmann, Zhao Lueping, Analysis of repeated categorical data using generalized estimating equations, 10.1002/sim.4780131106
  17. Little R. J. A., Statistical Analysis with Missing Data (1987)
  18. McCullagh P., Journal of the Royal Statistical Society, Series B, 42, 109 (1980)
  19. Olschewski M, Schulgen G, Schumacher M, Altman DG, Quality of life assessment in clinical cancer research, 10.1038/bjc.1994.240
  20. Robins James M., Rotnitzky Andrea, Semiparametric Efficiency in Multivariate Regression Models with Missing Data, 10.1080/01621459.1995.10476494
  21. Robins James M., Rotnitzky Andrea, Zhao Lue Ping, Analysis of Semiparametric Regression Models for Repeated Outcomes in the Presence of Missing Data, 10.1080/01621459.1995.10476493
  22. Rubin D. B., In: Imputation and Editing of Faulty or Missing Survey Data. Washington, DC: U.S. Department of Commerce, pp., 1 (1978)
  23. Multiple Imputation for Nonresponse in Surveys, ISBN:9780470316696, 10.1002/9780470316696
  24. RUBIN DONALD B., Inference and missing data, 10.1093/biomet/63.3.581
  25. Schafer J, Analysis of Incomplete Multivariate Data, ISBN:9780412040610, 10.1201/9781439821862
  26. Stupp Roger, Mason Warren P., van den Bent Martin J., Weller Michael, Fisher Barbara, Taphoorn Martin J.B., Belanger Karl, Brandes Alba A., Marosi Christine, Bogdahn Ulrich, Curschmann Jürgen, Janzer Robert C., Ludwin Samuel K., Gorlia Thierry, Allgeier Anouk, Lacombe Denis, Cairncross J. Gregory, Eisenhauer Elizabeth, Mirimanoff René O., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, 10.1056/nejmoa043330
  27. Tanner Martin A., Wong Wing Hung, The Calculation of Posterior Distributions by Data Augmentation, 10.1080/01621459.1987.10478458
  28. Taphoorn Martin JB, Stupp Roger, Coens Corneel, Osoba David, Kortmann Rolf, van den Bent Martin J, Mason Warren, Mirimanoff René O, Baumert Brigitta G, Eisenhauer Elizabeth, Forsyth Peter, Bottomley Andrew, Health-related quality of life in patients with glioblastoma: a randomised controlled trial, 10.1016/s1470-2045(05)70432-0
  29. van Buuren Stef, Multiple imputation of discrete and continuous data by fully conditional specification, 10.1177/0962280206074463
  30. White Ian R., Royston Patrick, Wood Angela M., Multiple imputation using chained equations: Issues and guidance for practice, 10.1002/sim.4067
  31. Williamson John M., Lipsitz Stuart R., Kim Kyung Mann, GEECAT and GEEGOR: computer programs for the analysis of correlated categorical response data, 10.1016/s0169-2607(98)00063-7