User menu

Coping with time and space in modelling malaria incidence: a comparison of survival and count regression models

Bibliographic reference Getachew, Yehenew ; Janssen, Paul ; Yewhalaw, Delenasaw ; Speybroeck, Niko ; Duchateau, Luc. Coping with time and space in modelling malaria incidence: a comparison of survival and count regression models. In: Statistics in Medicine, Vol. 32, no.18, p. 3224-3233 (2013)
Permanent URL http://hdl.handle.net/2078.1/141720
  1. Duchateau, The Frailty Model (2008)
  2. Ha Il Do, Lee Youngjo, Estimating Frailty Models via Poisson Hierarchical Generalized Linear Models, 10.1198/1061860032256
  3. Ma R., Random effects Cox models: A Poisson modelling approach, 10.1093/biomet/90.1.157
  4. Yewhalaw, Malaria Journal, 9, 1 (2010)
  5. Nielsen Jan, Parner Erik T., Analyzing multivariate survival data using composite likelihood and flexible parametric modeling of the hazard functions, 10.1002/sim.3934
  6. White Halbert, Maximum Likelihood Estimation of Misspecified Models, 10.2307/1912526
  7. Zhang H., Yu Q., Feng C., Gunzler D., Wu P., Tu X. M., A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses, 10.1080/02664763.2012.700452
  8. Duchateau Luc, Janssen Paul, Understanding Heterogeneity in Generalized Mixed and Frailty Models, 10.1198/000313005x43236
  9. Liu Lei, Huang Xuelin, The use of Gaussian quadrature for estimation in frailty proportional hazards models, 10.1002/sim.3077
  10. Ragland David R., Dichotomizing Continuous Outcome Variables: Dependence of the Magnitude of Association and Statistical Power on the Cutpoint : , 10.1097/00001648-199209000-00009