User menu

STAMINA: A Competition to Encourage the Development and Assessment of Software Model Inference Techniques

Bibliographic reference Walkinshaw, Neil ; Lambeau, Bernard ; Damas, Christophe ; Bogdanov, Kirill ; Dupont, Pierre. STAMINA: A Competition to Encourage the Development and Assessment of Software Model Inference Techniques. In: Empirical Software Engineering : an international journal, Vol. 18, no.4, p. 791-824 (2013)
Permanent URL http://hdl.handle.net/2078.1/141236
  1. Adriaans P, Jacobs C (2006) Using MDL for grammar induction. In: International colloquium on grammatical inference: algorithms and applications (ICGI). Lecture notes in artificial intelligence, vol 4201, pp 293–306
  2. Ammons G, Bodík R, Larus J (2002) Mining Specifications. In: Principles of programming languages (POPL). Portland, Oregon, pp 4–16
  3. Angluin Dana, On the complexity of minimum inference of regular sets, 10.1016/s0019-9958(78)90683-6
  4. Biermann A. W., Feldman J. A., On the Synthesis of Finite-State Machines from Samples of Their Behavior, 10.1109/tc.1972.5009015
  5. Biermann A.W., Krishnaswamy R., Constructing Programs from Example Computations, 10.1109/tse.1976.233812
  6. Combe David, de la Higuera Colin, Janodet Jean-Christophe, Zulu: An Interactive Learning Competition, Lecture Notes in Computer Science (2010) ISBN:9783642146831 p.139-146, 10.1007/978-3-642-14684-8_15
  7. Cook Jonathan E., Wolf Alexander L., Discovering models of software processes from event-based data, 10.1145/287000.287001
  8. Coste F, Nicolas J (1997) Regular inference as a graph coloring problem. In: Workshop on grammatical inference, automata induction, and language acquisition (ICML’97), pp 9–7
  9. Damas C., Lambeau B., Dupont P., van Lamsweerde A., Generating annotated behavior models from end-user scenarios, 10.1109/tse.2005.138
  10. Dupont Pierre, Lambeau Bernard, Damas Christophe, Lamsweerde Axel van, THE QSM ALGORITHM AND ITS APPLICATION TO SOFTWARE BEHAVIOR MODEL INDUCTION, 10.1080/08839510701853200
  11. Dupont P, Miclet L, Vidal E (1994) What is the search space of the regular inference? In: Proceedings of the international colloqium on grammatical inference and applications (ICGI’94). LNAI, vol 862. Springer Verlag, pp 25–37
  12. García P, de Parga M, López D, Ruiz J (2010) Learning automata teams. In: International colloquium on grammatical inference: algorithms and applications (ICGI). Springer, pp 52–65
  13. Gold E Mark, Complexity of automaton identification from given data, 10.1016/s0019-9958(78)90562-4
  14. Heule M, Verwer S (2010) Exact DFA identification using SAT solvers. In: International colloquium on grammatical inference: algorithms and applications (ICGI), vol 6339. Springer, pp 66–79
  15. Heule Marijn J. H., Verwer Sicco, Software model synthesis using satisfiability solvers, 10.1007/s10664-012-9222-z
  16. Hopcroft J, Motwani R, Ullman J (2007) Introduction to automata theory, languages, and computation, 3rd edn. Addison-Wesley
  17. Keller Robert M., Formal verification of parallel programs, 10.1145/360248.360251
  18. Kleinberg Jon M., Authoritative sources in a hyperlinked environment, 10.1145/324133.324140
  19. Lambeau B, Damas C, Dupont P (2008) State-merging DFA induction algorithms with mandatory merge constraints. In: International colloquium on grammatical inference: algorithms and applications (ICGI). Springer, pp 139–153
  20. van Lamsweerde A (2009) Requirements engineering: from system goals to UML models to software specifications. Wiley
  21. Lang K (1992) Random DFA’s can be approximately learned from sparse uniform examples. In: Proceedings of the international conference on learning theory (COLT’92), pp 45–52
  22. Lang K, Pearlmutter B, Price R (1998) Results of the abbadingo One DFA learning competition and a new evidence-driven state merging algorithm. In: International colloquium on grammatical inference and applications(ICGI). LNAI, vol 1433, pp 1–12
  23. Lee D., Yannakakis M., Principles and methods of testing finite state machines-a survey, 10.1109/5.533956
  24. Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data (or TKDD) 1(1)
  25. Lo D, Cheng H, Han J, Khoo S, Sun C (2009) Classification of software behaviors for failure detection: a discriminative pattern mining approach. In: International conference on knowledge discovery and data mining (KDD2009). ACM, pp 557–566
  26. Lo D, Khoo S (2006) SMArTIC: towards building an accurate, robust and scalable specification miner. In: Foundations of software engineering (FSE), pp 265–275
  27. Lorenzoli D, Mariani L, Pezzè M (2008) Automatic generation of software behavioral models. In: ICSE ’08: Proceedings of the 30th international conference on software engineering, pp 501–510
  28. Magee J, Kramer J (1999) Concurrency: state models and java programs. Wiley
  29. Mulder W, Jacobs C, van Someren M (2009) Collaborative DFA learning applied to grid administration. In: Benelearn, annual Belgian-Dutch conference on machine learning. Tilburg, the Netherlands, pp 38–46
  30. Van Nieuwpoort Rob V., Wrzesińska Gosia, Jacobs Ceriel J. H., Bal Henri E., Satin : A high-level and efficient grid programming model, 10.1145/1709093.1709096
  31. Oncina J., García P., INFERRING REGULAR LANGUAGES IN POLYNOMIAL UPDATED TIME, Series in Machine Perception and Artificial Intelligence (1992) ISBN:9789810208813 p.49-61, 10.1142/9789812797902_0004
  32. Raffelt Harald, Steffen Bernhard, Berg Therese, Margaria Tiziana, LearnLib: a framework for extrapolating behavioral models, 10.1007/s10009-009-0111-8
  33. Reiss S, Renieris M (2001) Encoding program executions. In: International conference on software engineering(ICSE), pp 221–230
  34. Rissanen Jorma, A Universal Prior for Integers and Estimation by Minimum Description Length, 10.1214/aos/1176346150
  35. Rousseeuw P, Ruts I, Tukey J (1999) The bagplot: a bivariate boxplot. Am Stat 53(4)
  36. Shahbaz M, Groz R (2009) Inferring mealy machines. In: FM 2009: formal methods, second world congress, Proceedings. Lecture notes in computer science, vol 5850. Springer, Eindhoven, The Netherlands, pp 207–222, 2–6 November 2009
  37. Sim S, Easterbrook S, Holt R (2003) Using benchmarking to advance research: a challenge to software engineering. In: International conference on software engineering (ICSE), pp 74–83
  38. Tukey J (1975) Mathematics and the picturing of data. In: Proceedings of the international congress of mathematicians, vol 2, pp 523–531
  39. Walkinshaw N, Bogdanov K (2008) Inferring finite-state models with temporal constraints. In: International conference on automated software engineering (ASE)
  40. Walkinshaw Neil, Bogdanov Kirill, Holcombe Mike, Salahuddin Sarah, Reverse Engineering State Machines by Interactive Grammar Inference, 10.1109/wcre.2007.45
  41. Walkinshaw Neil, Bogdanov Kirill, Holcombe Mike, Salahuddin Sarah, Improving dynamic software analysis by applying grammar inference principles, 10.1002/smr.373
  42. Walkinshaw N, Bogdanov K, Johnson K (2008) Evaluation and comparison of inferred regular grammars. In: International colloquium on grammatical inference: algorithms and applications (ICGI). Lecture notes in computer science, vol 5278. Springer, pp 252–265