User menu

Hybrid supercapacitor-battery materials for fast electrochemical charge storage.

Bibliographic reference Vlad, Alexandru ; Singh, N. ; Rolland, Julien ; Melinte, Sorin ; Ajayan, P.M. ; et. al. Hybrid supercapacitor-battery materials for fast electrochemical charge storage.. In: Scientific Reports, Vol. 4, p. 4315 (07/03/2014)
Permanent URL
  1. Tarascon J.-M., Armand M., Issues and challenges facing rechargeable lithium batteries, 10.1038/35104644
  2. Armand M., Tarascon J.-M., Building better batteries, 10.1038/451652a
  3. Choi, N.-S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Intl. Ed. 51, 9994–10024 (2012).
  4. Advances in Lithium-Ion Batteries, ISBN:9780306473562, 10.1007/b113788
  5. Zhang, H., Yu, X. & Braun, P. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotech. 6, 277–281 (2011).
  6. Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).
  7. Vlad, A. et al. Roll up nanowire battery from silicon chips. Proc. Natl. Acad. Sci. 109, 15168–15173 (2012).
  8. Singh, N. et al. Paintable battery. Sci. Rep. 2, 481 (2012).
  9. Wang, J. et al. Nature of LiFePO4 aging process: Roles of impurity phases. J. Power Sources 238, 454–463 (2013).
  10. Dubarry, M. & Liaw, B. Y. Identify capacity fading mechanism in a commercial LiFePO4 cell. J. Power Sources 194, 541–549 (2009).
  11. Kao, Y.-H. et al. Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes. Chem. Mater. 22, 5845–5855 (2010).
  12. Wang, Y., Zhao, D., Che, R. & Xia, Y. Pseudo-capacitive profile vs. Li-intercalation in Nano-LiFePO4 . J. Power Sources 236, 230–237 (2013).
  13. Goodenough, J. B. & Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
  14. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).
  15. Novák Petr, Müller Klaus, Santhanam K. S. V., Haas Otto, Electrochemically Active Polymers for Rechargeable Batteries, 10.1021/cr941181o
  16. Lang, X., Hirata, A., Fujita, T. & Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotech. 6, 232–236 (2011).
  17. Augustyn, V. et al. High-rate electrochemical energy storage through Li(+) intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).
  18. Cericola, D. & Kötz, R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochimica Acta 72, 1–17 (2012).
  19. Du Pasquier Aurelien, Plitz Irene, Menocal Serafin, Amatucci Glenn, A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications, 10.1016/s0378-7753(02)00718-8
  20. Chen, S. et al. (LiFePO4-AC)/Li4Ti5O12 hybrid supercapacitor: The effect of LiFePO4 content on its performance. J. Renewable Sustainable Energy 4, 033114 (2012).
  21. Naoi Katsuhiko, Ishimoto Syuichi, Miyamoto Jun-ichi, Naoi Wako, Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices, 10.1039/c2ee21675b
  22. Choi Hong Soo, Im Ji Hyuk, Kim TaeHoon, Park Jae Hyun, Park Chong Rae, Advanced energy storage device: a hybrid BatCap system consisting of battery–supercapacitor hybrid electrodes based on Li4Ti5O12–activated-carbon hybrid nanotubes, 10.1039/c2jm32841k
  23. Huang, Y.-H. & Goodenough, J. B. High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers. Chem. Mater. 20, 7237–7241 (2008).
  24. Huang, Q., Cosimbescu, L., Koech, P., Choi, D. & Lemmon, J. P. Composite organic radical-inorganic hybrid cathode for lithium-ion batteries. J. Power Sources 233, 69–73 (2013).
  25. Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li-O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).
  26. Weng, W. et al. Smart Polymeric Cathode Material with Intrinsic Overcharge Protection Based on a 2,5-Di-tert-butyl- 1,4-dimethoxybenzene Core Structure. Adv. Funct. Mater. 22, 4485–4492 (2012).
  27. Huang Xiankun, Wang Li, Liao Hongying, Meng Rong, Li Jianjun, He Xiangming, Charge rate influence on the electrochemical performance of LiFePO4 electrode with redox shuttle additive in electrolyte, 10.1007/s11581-012-0673-4
  28. Wang, Q. et al. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224 (2012).
  29. Wang Qing, Evans Nick, Zakeeruddin Shaik M., Exnar Ivan, Grätzel Michael, Molecular Wiring of Insulators:  Charging and Discharging Electrode Materials for High-Energy Lithium-Ion Batteries by Molecular Charge Transport Layers, 10.1021/ja066260j
  30. Badway F., Mansour A. N., Pereira N., Al-Sharab J. F., Cosandey F., Plitz I., Amatucci G. G., Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices, 10.1021/cm070421g
  31. Nishide, H. & Suga, T. Organic radical battery. The Electrochemical Society Interface Winter, 32–36 (2005).
  32. Suga Takeo, Pu Yong-Jin, Oyaizu Kenichi, Nishide Hiroyuki, Electron-Transfer Kinetics of Nitroxide Radicals as an Electrode-Active Material, 10.1246/bcsj.77.2203
  33. Nakahara Kentaro, Iriyama Jiro, Iwasa Shigeyuki, Suguro Masahiro, Satoh Masaharu, Cairns Elton J., High-rate capable organic radical cathodes for lithium rechargeable batteries, 10.1016/j.jpowsour.2006.11.045
  34. Malik Rahul, Burch Damian, Bazant Martin, Ceder Gerbrand, Particle Size Dependence of the Ionic Diffusivity, 10.1021/nl1023595
  35. Chung Sung-Yoon, Bloking Jason T., Chiang Yet-Ming, Electronically conductive phospho-olivines as lithium storage electrodes, 10.1038/nmat732
  36. Wang Li, He Xiangming, Sun Wenting, Wang Jianlong, Li Yadong, Fan Shoushan, Crystal Orientation Tuning of LiFePO4Nanoplates for High Rate Lithium Battery Cathode Materials, 10.1021/nl3027839
  37. Herle, P. S., Ellis, B., Coombs, N. & Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147–152 (2004).
  38. Park, O. K. et al. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 4, 1621–1633 (2011).
  39. Zaghib K., Guerfi A., Hovington P., Vijh A., Trudeau M., Mauger A., Goodenough J.B., Julien C.M., Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends, 10.1016/j.jpowsour.2012.12.095
  40. Bi, Z., Zhang, X., He, W., Min, D. & Zhang, W. Recent advances in LiFePO4 nanoparticles with different morphology for high-performance lithium-ion batteries. RSC Adv. 3, 19744–19751 (2013).
  41. Kim, J.-K. et al. Nano-fibrous polymer films for organic rechargeable batteries. J. Mater. Chem. A 1, 2426 (2013).
  42. Guo Wei, Yin Ya-Xia, Xin Sen, Guo Yu-Guo, Wan Li-Jun, Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene, 10.1039/c1ee02148f
  43. Choi, W., Ohtani, S., Oyaizu, K., Nishide, H. & Geckeler, K. E. Radical Polymer-Wrapped SWNTs at a Molecular Level: High-Rate Redox Mediation Through a Percolation Network for a Transparent Charge-Storage Material. Adv. Mater. 23, 4440–4443 (2011).
  44. Ouvrard Guy, Zerrouki Miloud, Soudan Patrick, Lestriez Bernard, Masquelier Christian, Morcrette Mathieu, Hamelet Stéphane, Belin Stéphanie, Flank Anne Marie, Baudelet François, Heterogeneous behaviour of the lithium battery composite electrode LiFePO4, 10.1016/j.jpowsour.2012.11.057
  45. Lindström Henrik, Södergren Sven, Solbrand Anita, Rensmo Håkan, Hjelm Johan, Hagfeldt Anders, Lindquist Sten-Eric, Li+Ion Insertion in TiO2(Anatase). 2. Voltammetry on Nanoporous Films, 10.1021/jp970490q
  46. Kanamura, H., Takemura, B., Saito, T. & Kanamura, K. Evaluation of real performance of LiFePO4 by using single particle technique. J. Power Sources 217, 444–448 (2012).
  47. Suga Takeo, Pu Yong-Jin, Kasatori Shinji, Nishide Hiroyuki, Cathode- and Anode-Active Poly(nitroxylstyrene)s for Rechargeable Batteries:  p- and n-Type Redox Switching via Substituent Effects, 10.1021/ma0628578
  48. Bilgiç, B., Kılıç, Ç. & Esat, B. First-principles study of polyacetylene derivatives bearing nitroxide radicals. Phys. Rev. B 84, 115207 (2011).
  49. Dunn B., Kamath H., Tarascon J.-M., Electrical Energy Storage for the Grid: A Battery of Choices, 10.1126/science.1212741