User menu

A Bayesian design space for analytical methods based on multivariate models and predictions

Bibliographic reference Lebrun, Pierre ; Boulanger, Bruno ; Debrus, Benjamin ; Lambert, Philippe ; Hubert, Philippe. A Bayesian design space for analytical methods based on multivariate models and predictions. In: Journal of Biopharmaceutical Statistics, Vol. 23, no.6, p. 1330-1351 (2013)
Permanent URL http://hdl.handle.net/2078.1/141072
  1. Box G. E. P., Bayesian Inference in Statistical Analysis (1973)
  2. DAWID A. P., Some matrix-variate distribution theory: Notational considerations and a Bayesian application, 10.1093/biomet/68.1.265
  3. Debrus Benjamin, Lebrun Pierre, Ceccato Attilio, Caliaro Gabriel, Govaerts Bernadette, Olsen Bernard A., Rozet Eric, Boulanger Bruno, Hubert Philippe, A new statistical method for the automated detection of peaks in UV-DAD chromatograms of a sample mixture, 10.1016/j.talanta.2009.03.009
  4. Debrus Benjamin, Lebrun Pierre, Ceccato Attilio, Caliaro Gabriel, Rozet Eric, Nistor Iolanda, Oprean Radu, Rupérez Francisco J., Barbas Coral, Boulanger Bruno, Hubert Philippe, Application of new methodologies based on design of experiments, independent component analysis and design space for robust optimization in liquid chromatography, 10.1016/j.aca.2011.02.035
  5. Del Castillo E., Journal of Quality Technology, 44, 117 (2012)
  6. Derringer G. C., Journal of Quality Technology, 12, 214 (1980)
  7. Dewé W., Marini R.D., Chiap P., Hubert Ph., Crommen J., Boulanger B., Development of response models for optimising HPLC methods, 10.1016/j.chemolab.2004.04.016
  8. Geisser Seymour, Bayesian Estimation in Multivariate Analysis, 10.1214/aoms/1177700279
  9. Geweke , J. ( 1991 ). Efficient simulation from the multivariate normal and Student-tdistributions subject to linear constraints and the evaluation of constraint probabilities. Computing Science and Statistics: 23rd Symposium on the Interface, Seattle, WA; April .
  10. Gupta A. K., Matrix Variate Distributions (1999)
  11. Guttman I., Statistical Tolerance Regions: Classical and Bayesian (1970)
  12. Hamada Michael, Johnson Valen, Moore Leslie M, Wendelberger Joanne, Bayesian Prediction Intervals and Their Relationship to Tolerance Intervals, 10.1198/004017004000000518
  13. Harrington E. C., Industrial. Quality Control, 21, 494 (1965)
  14. ICH Q8 . ( 2006 ). Guidance for Industry, Q8 Pharmaceutical Development, 2006. International Conference for Harmonization, global .
  15. Le Bailly de Tilleghem , C. , Govaerts , B. ( 2005 ). Distribution of desirability index in multicriteria optimization using desirability functions based on the cumulative distribution function of the standard normal. Technical report 0531, Louvain-la-Neuve: Université Catholique de Louvain .
  16. Lebrun Pierre, Govaerts Bernadette, Debrus Benjamin, Ceccato Attilio, Caliaro Gabriel, Hubert Philippe, Boulanger Bruno, Development of a new predictive modelling technique to find with confidence equivalence zone and design space of chromatographic analytical methods, 10.1016/j.chemolab.2007.05.010
  17. Massart D. L., Chemometrics: A Textbook (Data Handling in Science and Technology) (1990)
  18. Miró-Quesada Guillermo, Del Castillo Enrique, Peterson John J., A Bayesian Approach for Multiple Response Surface Optimization in the Presence of Noise Variables, 10.1080/0266476042000184019
  19. Peterson J. J., Journal Quality Technology, 36, 139 (2004)
  20. Peterson John J., A Bayesian Approach to the ICH Q8 Definition of Design Space, 10.1080/10543400802278197
  21. Peterson John J., Lief Kevin, The ICH Q8 Definition of Design Space: A Comparison of the Overlapping Means and the Bayesian Predictive Approaches, 10.1198/sbr.2009.08065
  22. Peterson John J., Yahyah Mohammad, A Bayesian Design Space Approach to Robustness and System Suitability for Pharmaceutical Assays and Other Processes, 10.1198/sbr.2009.0037
  23. Peterson John J., Miró-Quesada Guillermo, del Castillo Enrique, A Bayesian Reliability Approach to Multiple Response Optimization with Seemingly Unrelated Regression Models, 10.1080/16843703.2009.11673204
  24. Press S. J., Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference (1972)
  25. Royston Patrick, Remark AS R94: A Remark on Algorithm AS 181: The W-test for Normality, 10.2307/2986146
  26. Schoenmakers P.J., Abbott R.W., Optimization of chromatographic selectivity—a guide to method development (Journal of chromatography library, vol 36), 10.1016/s0003-2670(00)80772-2
  27. Snyder Lloyd R., Kirkland Joseph J., Glajch Joseph L., Practical HPLC Method Development : Snyder/Practical, ISBN:9781118592014, 10.1002/9781118592014
  28. Steuer , D. ( 2000 ). An Improved optimisation procedure for desirability indices. Technical report 27/00, SFB 475. Dortmund, Germany: Dortmund University .
  29. Stockdale Gregory W., Cheng Aili, Finding Design Space and a Reliable Operating Region Using a Multivariate Bayesian Approach with Experimental Design, 10.1080/16843703.2009.11673206
  30. Tee-Won L., Independent Component Analysis, Theory and Applications (2001)
  31. Timm N. H., Applied Multivariate Analysis (2002)
  32. Vanbel P.F, Development of flexible and efficient strategies for optimizing chromatographic separations, 10.1016/s0731-7085(99)00162-4
  33. Wang Guoqing, Ding Qingzhu, Hou Zhenyu, Independent component analysis and its applications in signal processing for analytical chemistry, 10.1016/j.trac.2008.01.009