User menu

Quantum gravity and the cosmological constant: Lessons from two-dimensional dilaton gravity

Bibliographic reference Govaerts, Jan ; Zonetti, Simone. Quantum gravity and the cosmological constant: Lessons from two-dimensional dilaton gravity. In: Physical Review D, Vol. 87, no.8, p. 084016 (2013)
Permanent URL http://hdl.handle.net/2078.1/140914
  1. Carroll Sean M., The Cosmological Constant, 10.12942/lrr-2001-1
  2. Perlmutter S., Aldering G., Goldhaber G., Knop R. A., Nugent P., Castro P. G., Deustua S., Fabbro S., Goobar A., Groom D. E., Hook I. M., Kim A. G., Kim M. Y., Lee J. C., Nunes N. J., Pain R., Pennypacker C. R., Quimby R., Lidman C., Ellis R. S., Irwin M., McMahon R. G., Ruiz‐Lapuente P., Walton N., Schaefer B., Boyle B. J., Filippenko A. V., Matheson T., Fruchter A. S., Panagia N., Newberg H. J. M., Couch W. J., Project The Supernova Cosmology, Measurements of Ω and Λ from 42 High‐Redshift Supernovae, 10.1086/307221
  3. Riess Adam G., Filippenko Alexei V., Challis Peter, Clocchiatti Alejandro, Diercks Alan, Garnavich Peter M., Gilliland Ron L., Hogan Craig J., Jha Saurabh, Kirshner Robert P., Leibundgut B., Phillips M. M., Reiss David, Schmidt Brian P., Schommer Robert A., Smith R. Chris, Spyromilio J., Stubbs Christopher, Suntzeff Nicholas B., Tonry John, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, 10.1086/300499
  4. Govaerts Jan, Zonetti Simone, Quantized cosmological constant in 1+1 dimensional quantum gravity with coupled scalar matter, 10.1088/0264-9381/28/18/185001
  5. Zonetti Simone, Govaerts Jan, Duality between (1+1)-dimensional dilaton–Maxwell gravity and Liouville field theory, 10.1088/1751-8113/45/4/042001
  6. J. Govaerts, Proceedings of 3rd International Workshop on Contemporary Problems in Mathematical Physics, Cotonou, Benin, 2003 (2004)
  7. Govaerts J, Troost W, A comparison of Faddeev and BFV phase-space path integrals, 10.1088/0264-9381/8/9/007
  8. J. Govaerts, Hamiltonian Quantisation and Constrained Dynamics (1991)
  9. Ordóñez C. R., Pons J. M., Dirac and reduced quantization: A Lagrangian approach and application to coset spaces, 10.1063/1.531111
  10. Grumiller D., Kummer W., Vassilevich D.V., Dilaton gravity in two dimensions, 10.1016/s0370-1573(02)00267-3
  11. D. Grumiller, Turk. J. Phys., 30, 349 (2006)
  12. Grumiller Daniel, McNees Robert, Thermodynamics of black holes in two (and higher) dimensions, 10.1088/1126-6708/2007/04/074
  13. Witten Edward, String theory and black holes, 10.1103/physrevd.44.314
  14. Callan Curtis G., Giddings Steven B., Harvey Jeffrey A., Strominger Andrew, Evanescent black holes, 10.1103/physrevd.45.r1005
  15. NAKAYAMA YU, LIOUVILLE FIELD THEORY: A DECADE AFTER THE REVOLUTION, 10.1142/s0217751x04019500
  16. J. Polchinski, String Theory Vol. 1: An Introduction to the Bosonic String (1998)
  17. M. B. Green, Superstring Theory Vol. 1: Introduction (1987)
  18. Curtright Thomas L., Thorn Charles B., Conformally Invariant Quantization of the Liouville Theory, 10.1103/physrevlett.48.1309
  19. J. R. Klauder, Fundamentals of Quantum Optics (1968)