User menu

Anisotropic adaptive nearly body-fitted meshes for CFD

Bibliographic reference Quan, Dieu Linh ; Toulorge, Thomas ; Bricteux, Gaëtan ; Remacle, Jean-François ; Marchandise, Emilie. Anisotropic adaptive nearly body-fitted meshes for CFD. In: Engineering with Computers, Vol. 30, no. 4, p. 517-533 (2014)
Permanent URL
  1. Alauzet F., Size gradation control of anisotropic meshes, 10.1016/j.finel.2009.06.028
  2. Balay S, Brown J, Buschelman K, Gropp WD, Kaushik D, Knepley MG, Curfman McInnes L, Smith BF, Zhang H (2013) PETSc Web page.
  3. Barbosa Helio J.C., Hughes Thomas J.R., The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition, 10.1016/0045-7825(91)90125-p
  4. Beran P (1991) Steady and unsteady solutions of the Navier-Stokes equations for flows about airfoils at low speeds. AIAA Paper 91–1733
  5. Borouchaki Houman, George Paul Louis, Mohammadi Bijan, Delaunay mesh generation governed by metric specifications Part II. Applications, 10.1016/s0168-874x(96)00065-0
  6. Burleson AC, Turitto VT (1996) Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior. Thromb Haemost 76:118–123
  7. Calhoun Donna, A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-Vorticity Equations in Irregular Regions, 10.1006/jcph.2001.6970
  8. Choi Jung-Il, Oberoi Roshan C., Edwards Jack R., Rosati Jacky A., An immersed boundary method for complex incompressible flows, 10.1016/
  9. Cignoni P., Rocchini C., Scopigno R., Metro: Measuring Error on Simplified Surfaces, 10.1111/1467-8659.00236
  10. Claisse A, Ducrot V, Frey P (2009) Levelsets and anisotropic mesh adaptation. Discret Contin Dyn Syst 23(1–2):165–183
  11. Coutanceau Madeleine, Bouard Roger, Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, 10.1017/s0022112077000135
  12. Dennis S. C. R., Chang Gau-Zu, Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, 10.1017/s0022112070001428
  13. Dobrzynski C., Frey P., Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations, Proceedings of the 17th International Meshing Roundtable ISBN:9783540879206 p.177-194, 10.1007/978-3-540-87921-3_11
  14. Dolbow J.E., Franca L.P., Residual-free bubbles for embedded Dirichlet problems, 10.1016/j.cma.2008.02.033
  15. Dolbow John, Harari Isaac, An efficient finite element method for embedded interface problems, 10.1002/nme.2486
  16. Fornberg Bengt, A numerical study of steady viscous flow past a circular cylinder, 10.1017/s0022112080000419
  17. Frey P.J., Alauzet F., Anisotropic mesh adaptation for CFD computations, 10.1016/j.cma.2004.11.025
  18. Geller Sebastian, Krafczyk Manfred, Tölke Jonas, Turek Stefan, Hron Jaroslav, Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows, 10.1016/j.compfluid.2005.08.009
  19. Geuzaine Christophe, Remacle Jean-François, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, 10.1002/nme.2579
  20. Hachem E., Kloczko T., Digonnet H., Coupez T., Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method, 10.1002/fld.2498
  21. Hautefeuille Martin, Annavarapu Chandrasekhar, Dolbow John E., Robust imposition of Dirichlet boundary conditions on embedded surfaces : ROBUST IMPOSITION OF DIRICHLET BC ON EMBEDDED SURFACES, 10.1002/nme.3306
  22. Hecht F (2006) Bamg: Bidimensional anisotropic mesh generator.
  23. Ilinca F., Hétu J.-F., A finite element immersed boundary method for fluid flow around rigid objects, 10.1002/fld.2222
  24. Krams R., Wentzel J.J., Oomen J.A.F., Vinke R., Schuurbiers J.C.H., de Feyter P.J., Serruys P.W., Slager C.J., Evaluation of Endothelial Shear Stress and 3D Geometry as Factors Determining the Development of Atherosclerosis and Remodeling in Human Coronary Arteries in Vivo : Combining 3D Reconstruction from Angiography and IVUS (ANGUS) with Computational Fluid Dynamics, 10.1161/01.atv.17.10.2061
  25. Le D.V., Khoo B.C., Lim K.M., An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains, 10.1016/j.cma.2007.08.008
  26. Lima E Silva A.L.F., Silveira-Neto A., Damasceno J.J.R., Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, 10.1016/s0021-9991(03)00214-6
  27. Marchandise E, Crosetto P, Geuzaine C, Remacle J-F, Sauvage E (2011) Quality open source mesh generation for cardiovascular flow simulations. In: Volume accepted of springer series on modeling, simulation and applications, chapter of modelling physiological flows. Springer, Berlin.
  28. Marchandise Emilie, Remacle Jean-François, A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows, 10.1016/
  29. Mavriplis D, Jameson A (1987) Multigrid solution of the two-dimensional Euler equations on unstructured triangular meshes. AIAA paper 87–0353
  30. Pagnutti Doug, Ollivier-Gooch Carl, Two-dimensional Delaunay-based anisotropic mesh adaptation, 10.1007/s00366-009-0143-4
  31. Park Jeongyoung, Kwon Kiyoung, Choi Haecheon, Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160, 10.1007/bf02942594
  32. Pulliam TH (1985) Efficient solution methods for the Navier-Stokes equations. Lecture Notes for the von Kármán Institute For Fluid Dynamics Lecture Series: Numerical Techniques for Viscous Flow Computation In Turbomachinery Bladings, von Kármán Institute, Rhode-St-Geness, Belgium
  33. Quan Dieu-Linh, Toulorge Thomas, Marchandise Emilie, Remacle Jean-François, Bricteux Gaëtan, Anisotropic mesh adaptation with optimal convergence for finite elements using embedded geometries, 10.1016/j.cma.2013.09.007
  34. Radespiel R (1987) A cell-vertex multigrid method for the Navier-Stokes equations. NASA TM-101557
  35. Remacle J-F, Li X, Chevaugeon N, Shephard MS (2002) Transient mesh adaptation using conforming and non conforming mesh modifications. In: Sandia National Laboratories (ed) Proceedings of the 11th international meshing roundtable, Sept 15–18
  36. Russell David, Jane Wang Z., A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow, 10.1016/s0021-9991(03)00310-3
  37. Sauvage E (2014) Patient-specific blood flow modelling. Ph. D. Thesis, Université catholique de Louvain
  38. Schlichting H (1960) Boundary layer theory. McGraw-Hill Book Company Inc, New York
  39. Shaaban Akram M., Duerinckx André J., Wall Shear Stress and Early Atherosclerosis : A Review, 10.2214/ajr.174.6.1741657
  40. Sucker D., Brauer H., Fluiddynamik bei quer angeströmten Zylindern, 10.1007/bf01681556
  41. Tritton D. J., Experiments on the flow past a circular cylinder at low Reynolds numbers, 10.1017/s0022112059000829
  42. Turkel E., Radespiel R., Kroll N., Assessment of preconditioning methods for multidimensional aerodynamics, 10.1016/s0045-7930(97)00013-3
  43. Wieselsberger C (1922) New data on the laws of fluid resistance. NACA TN 84
  44. Ye T., Mittal R., Udaykumar H.S., Shyy W., An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries, 10.1006/jcph.1999.6356