User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy

  • Open access
  • PDF
  • 2.61 M
  1. Lal R., Soil Carbon Sequestration Impacts on Global Climate Change and Food Security, 10.1126/science.1097396
  2. Van Oost K., Quine T. A., Govers G., De Gryze S., Six J., Harden J. W., Ritchie J. C., McCarty G. W., Heckrath G., Kosmas C., Giraldez J. V., da Silva J. R. M., Merckx R., The Impact of Agricultural Soil Erosion on the Global Carbon Cycle, 10.1126/science.1145724
  3. Sanchez P. A., Ahamed S., Carre F., Hartemink A. E., Hempel J., Huising J., Lagacherie P., McBratney A. B., McKenzie N. J., Mendonca-Santos M. d. L., Minasny B., Montanarella L., Okoth P., Palm C. A., Sachs J. D., Shepherd K. D., Vagen T.-G., Vanlauwe B., Walsh M. G., Winowiecki L. A., Zhang G.-L., Digital Soil Map of the World, 10.1126/science.1175084
  4. van Wesemael B., Paustian K., Meersmans J., Goidts E., Barancikova G., Easter M., Agricultural management explains historic changes in regional soil carbon stocks, 10.1073/pnas.1002592107
  5. R Baritz, Chichester, United Kingdom: Jandl, R., Rodeghiero, M., Olsson, M, 49 (2011)
  6. Bellon-Maurel Véronique, McBratney Alex, Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – Critical review and research perspectives, 10.1016/j.soilbio.2011.02.019
  7. O’ Rourke S. M., Holden N. M., Optical sensing and chemometric analysis of soil organic carbon - a cost effective alternative to conventional laboratory methods? : Optical sensing and chemometric analysis of soil, 10.1111/j.1475-2743.2011.00337.x
  8. Stenberg Bo, Viscarra Rossel Raphael A., Mouazen Abdul Mounem, Wetterlind Johanna, Visible and Near Infrared Spectroscopy in Soil Science, Advances in Agronomy (2010) ISBN:9780123810335 p.163-215, 10.1016/s0065-2113(10)07005-7
  9. Ben-Dor E., Chabrillat S., Demattê J.A.M., Taylor G.R., Hill J., Whiting M.L., Sommer S., Using Imaging Spectroscopy to study soil properties, 10.1016/j.rse.2008.09.019
  10. E Ben-Dor, 3, 111 (1999)
  11. Shepherd Keith, Walsh Marcus, Review: Infrared spectroscopy—enabling an evidence- based diagnostic surveillance approach to agricultural and environmental management in developing countries, 10.1255/jnirs.716
  12. Shepherd Keith D., Walsh Markus G., Development of Reflectance Spectral Libraries for Characterization of Soil Properties, 10.2136/sssaj2002.9880
  13. DF Malley, 44, 729 (2004)
  14. Brown David J., Shepherd Keith D., Walsh Markus G., Dewayne Mays M., Reinsch Thomas G., Global soil characterization with VNIR diffuse reflectance spectroscopy, 10.1016/j.geoderma.2005.04.025
  15. Viscarra Rossel Raphael, The Soil Spectroscopy Group and the development of a global soil spectral library, 10.1255/nirn.1131
  16. ICRAF-ISRIC (2010) A Globally Distributed Soil Spectral Library: Visible Near Infrared Diffuse Reflectance Spectra. World Agroforestry Centre (ICRAF) and ISRIC - World Soil Information. Available: Accessed 26 March 2012.
  17. Ge Yufeng, Morgan Cristine L.S., Grunwald Sabine, Brown David J., Sarkhot Deoyani V., Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers, 10.1016/j.geoderma.2010.12.020
  18. Genot Valérie, Colinet Gilles, Bock Laurent, Vanvyve Dominique, Reusen Yorick, Dardenne Pierre, Near infrared reflectance spectroscopy for estimating soil characteristics valuable in the diagnosis of soil fertility, 10.1255/jnirs.923
  19. ICRAF Soil-Plant Spectral Diagnostics Laboratory. Available: Accessed 13 May 2013.
  21. Africa Soil Information Service (2012) Analyzing Africa’s Soils with Infrared Spectroscopy. AfSIS Newsletter: 5.
  22. Rossel R. A. Viscarra, Webster R., Predicting soil properties from the Australian soil visible-near infrared spectroscopic database, 10.1111/j.1365-2389.2012.01495.x
  23. Decision No 1578/2007/EC of the European Parliament and of the Council (2007). Available: 15 January 2013.
  24. Regulation (EC) No 223/2009 of the European Parliament and of the Council (2009). Available: 15 January 2013.
  25. Eurostat (2009) LUCAS 2009 survey. Available: Accessed 8 May 2012.
  26. Montanarella L, Tóth G, Jones A (2011) Soil Component in the 2009 LUCAS Survey. Land quality and land use information in the European Union. Luxembourg: Tóth, G and Németh, T. 209–219.
  27. Rinnan Åsmund, Berg Frans van den, Engelsen Søren Balling, Review of the most common pre-processing techniques for near-infrared spectra, 10.1016/j.trac.2009.07.007
  28. Savitzky Abraham., Golay M. J. E., Smoothing and Differentiation of Data by Simplified Least Squares Procedures., 10.1021/ac60214a047
  29. Barnes R. J., Dhanoa M. S., Lister Susan J., Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra, 10.1366/0003702894202201
  30. FAO IUSS Working Group (1998) World reference base for soil resources. Roma, Italy.
  31. Eurostat (2009) LUCAS 2009 (Land Use/Cover Area Frame Survey) - Technical reference document C-3: Land Use and Land Cover Nomenclature. Available: Accessed 9 May 2012.
  32. Kennard R. W., Stone L. A., Computer Aided Design of Experiments, 10.1080/00401706.1969.10490666
  33. Clark RN, Roush TL (1984) Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications. J Geophys Res 89: PP. 6329–6340.
  34. Kuhn M, Wing J, Weston S, Williams A, Keefer C, et al.. (2012) Caret: classification and regression training. R package, v515. Available: Accessed 13 May 2013.
  35. R Development Core Team (2012) R: A language and environment for statistical computing. Available: Accessed 13 May 2013.
  36. Minasny Budiman, McBratney Alex B., Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy, 10.1016/j.chemolab.2008.06.003
  37. Quinlan J.R., Combining Instance-Based and Model-Based Learning, Machine Learning Proceedings 1993 (1993) ISBN:9781558603073 p.236-243, 10.1016/b978-1-55860-307-3.50037-x
  38. Hastie Trevor, Tibshirani Robert, Friedman Jerome, The Elements of Statistical Learning, ISBN:9780387848570, 10.1007/978-0-387-84858-7
  39. Rossel R.A. Viscarra, Behrens T., Using data mining to model and interpret soil diffuse reflectance spectra, 10.1016/j.geoderma.2009.12.025
  40. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Belmont, USA: Wadsworth International Group.
  41. Kuhn M (2012) Variable selection using the caret package. Available: Accessed 7 May 2012.
  42. Fearn Tom, Combining other predictors with NIR spectra, 10.1255/nirn.1175
  43. Bellon-Maurel Véronique, Fernandez-Ahumada Elvira, Palagos Bernard, Roger Jean-Michel, McBratney Alex, Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy, 10.1016/j.trac.2010.05.006
  44. Fearn Tom, Calculating standard deviations, 10.1255/nirn.834
  45. Ben-Dor E, The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process, 10.1016/s0034-4257(96)00120-4
  46. ELVIDGE CHRISTOPHER D., Visible and near infrared reflectance characteristics of dry plant materials, 10.1080/01431169008955129
  47. Kuang B., Mouazen A. M., Influence of the number of samples on prediction error of visible and near infrared spectroscopy of selected soil properties at the farm scale, 10.1111/j.1365-2389.2012.01456.x
  48. Sørensen L. K., Dalsgaard S., Determination of Clay and Other Soil Properties by Near Infrared Spectroscopy, 10.2136/sssaj2005.0159
  49. McDowell Meryl L., Bruland Gregory L., Deenik Jonathan L., Grunwald Sabine, Effects of Subsetting by Carbon Content, Soil Order, and Spectral Classification on Prediction of Soil Total Carbon with Diffuse Reflectance Spectroscopy, 10.1155/2012/294121
  50. Brown David J., Bricklemyer Ross S., Miller Perry R., Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana, 10.1016/j.geoderma.2005.01.001
  51. Nduwamungu C, Ziadi N, Parent L -É, Tremblay G F, Thuriès L, Opportunities for, and limitations of, near infrared reflectance spectroscopy applications in soil analysis: A review, 10.4141/cjss08076
  52. Ladoni Moslem, Bahrami Hosein Ali, Alavipanah Sayed Kazem, Norouzi Ali Akbar, Estimating soil organic carbon from soil reflectance: a review, 10.1007/s11119-009-9123-3
  53. Clark RN (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of Remote Sensing. New York, USA: Rencz, A.N., Vol. 3. 3–58. Available: Accessed 27 June 2012.
  54. Stenberg Bo, Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon, 10.1016/j.geoderma.2010.04.008
  55. Ben-Dor E., Banin A., Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties, 10.2136/sssaj1995.03615995005900020014x
  56. Vasques Gustavo M., Grunwald Sabine, Harris Willie G., Spectroscopic Models of Soil Organic Carbon in Florida, USA, 10.2134/jeq2009.0314
  57. West LT, Waltman SW, Wills S, Reinsch TG, Benham EC, et al.. (2010) Soil Carbon Stocks in the U.S.: Current Data and Future Inventories. Proceedings of International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries. Bogor, Indonesia. p. 14. Available: Accessed 29 August 2012.
  58. European Commission and the Europan Soil Bureau Network (2004) The European Soil Database distribution version 2.0. Available: Accessed 13 May 2013.
Bibliographic reference Stevens, Antoine ; Nocita, Marco ; Tóth, Gergely ; Montanarella, Luca ; van Wesemael, Bas ; et. al. Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy. In: PLoS One, Vol. 8, no.6, p. e66409 (2013)
Permanent URL