User menu

The muscarinic receptor subtype in mouse pancreatic B-cells.

Bibliographic reference Henquin, Jean-Claude ; Nenquin, Myriam. The muscarinic receptor subtype in mouse pancreatic B-cells.. In: FEBS letters, Vol. 236, no. 1, p. 89-92 (1988)
Permanent URL http://hdl.handle.net/2078.1/13970
  1. Nathanson N M, Molecular Properties of the Muscarinic Acetylcholine Receptor, 10.1146/annurev.ne.10.030187.001211
  2. Hammer R., Berrie C. P., Birdsall N. J. M., Burgen A. S. V., Hulme E. C., Pirenzepine distinguishes between different subclasses of muscarinic receptors, 10.1038/283090a0
  3. Watson Mark, Yamamura Henry I., Roeske William R., A unique regulatory profile and regional distribution of [3H]pirenzepine binding in the rat provide evidence for distinct M1 and M2 muscarinic receptor subtypes, 10.1016/0024-3205(83)90652-5
  4. Hammer R., Giraldo E., Schiavi G.B., Monferini E., Ladinsky H., Binding profile of a novel cardioselective muscarine receptor antagonist, AF-DX 116, to membranes of peripheral tissues and brain in the rat, 10.1016/0024-3205(86)90409-1
  5. Giachetti A., Micheletti R., Montagna E., Cardioselective profile of AF-DX 116, a muscarine M2 receptor antagonist, 10.1016/0024-3205(86)90410-8
  6. Korc, J. Pharmacol. Exp. Ther., 240, 118 (1987)
  7. Kubo Tai, Maeda Akito, Sugimoto Katsunori, Akiba Isamu, Mikami Atsushi, Takahashi Hideo, Haga Tatsuya, Haga Kazuko, Ichiyama Arata, Kangawa Kenji, Matsuo Hisayuki, Hirose Tadaaki, Numa Shosaku, Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence, 10.1016/0014-5793(86)81144-9
  8. Peralta E., Winslow J., Peterson G., Smith D., Ashkenazi A, Ramachandran J, Schimerlik M., Capon D., Primary structure and biochemical properties of an M2 muscarinic receptor, 10.1126/science.3107123
  9. Bonner T., Buckley N., Young A., Brann M., Identification of a family of muscarinic acetylcholine receptor genes, 10.1126/science.3037705
  10. Gocayne J., Robinson D. A., FitzGerald M. G., Chung F. Z., Kerlavage A. R., Lentes K. U., Lai J., Wang C. D., Fraser C. M., Venter J. C., Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family., 10.1073/pnas.84.23.8296
  11. Peralta, EMBO J., 6, 3923 (1987)
  12. MILLER RALPH E., Pancreatic Neuroendocrinology: Peripheral Neural Mechanisms in the Regulation of the Islets of Langerhans*, 10.1210/edrv-2-4-471
  13. Malaisse W. J., Stimulus-secretion coupling in the pancreatic B-cell: The cholinergic pathway for insulin release, 10.1002/dmr.5610020303
  14. Nenquin M., Awouters P., Mathot F., Henquin J.C., Distinct effects of acetylcholine and glucose on45calcium and86rubidium efflux from mouse pancreatic islets, 10.1016/0014-5793(84)81218-1
  15. Morgan N G, Rumford G M, Montague W, Studies on the role of inositol trisphosphate in the regulation of insulin secretion from isolated rat islets of Langerhans, 10.1042/bj2280713
  16. Wollheim, J. Biol. Chem., 261, 8314 (1986)
  17. HENQUIN J. C., GARCIA M.-C., BOZEM M., HERMANS M. P., NENQUIN M., Muscarinic Control of Pancreatic B Cell Function Involves Sodium-Dependent Depolarization and Calcium Influx*, 10.1210/endo-122-5-2134
  18. Garcia, Biochem. J., 254 (1988)
  19. HENQUIN J. C., Opposite effects of intracellular Ca2+ and glucose on K+ permeability of pancreatic islet cells, 10.1038/280066a0
  20. A. Goldstein L. Aronow S.M. Kalman Principles of Drug Action: The Basis of Pharmacology 1974 John Wiley & Sons New York 1 854
  21. Otsuki Makoto, Nakamura Takahiko, Okabayashi Yoshinori, Oka Toru, Fujii Masatoshi, Baba Shigeaki, Comparative inhibitory effects of pirenzepine and atropine on cholinergic stimulation of exocrine and endocrine rat pancreas, 10.1016/0016-5085(85)90344-0
  22. Petersen Ole H., Stimulus-excitation coupling in plasma membranes of pancreatic acinar cells, 10.1016/0304-4157(82)90023-5
  23. Ashkenazi A, Winslow J., Peralta E., Peterson G., Schimerlik M., Capon D., Ramachandran J, An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover, 10.1126/science.2823384