User menu

A Riemannian symmetric rank-one trust-region method

Bibliographic reference Huang, Wen ; Absil, Pierre-Antoine ; Gallivan, Kyle A.. A Riemannian symmetric rank-one trust-region method. In: Mathematical Programming, Vol. 150, no. 2, p. 179-2016 (2014)
Permanent URL http://hdl.handle.net/2078.1/139302
  1. Absil P.-A., Baker C.G., Gallivan K.A., Trust-Region Methods on Riemannian Manifolds, 10.1007/s10208-005-0179-9
  2. Absil P.-A., Mahony R., Sepulchre R., Optimization Algorithms on Matrix Manifolds : , ISBN:9781400830244, 10.1515/9781400830244
  3. Absil P.-A., Malick Jérôme, Projection-like Retractions on Matrix Manifolds, 10.1137/100802529
  4. Adler R. L., Newton's method on Riemannian manifolds and a geometric model for the human spine, 10.1093/imanum/22.3.359
  5. Afsari Bijan, Tron Roberto, Vidal René, On the Convergence of Gradient Descent for Finding the Riemannian Center of Mass, 10.1137/12086282x
  6. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edn. Academic Press, London (2003)
  7. Borsdorf, R.: Structured Matrix Nearness Problems: Theory and Algorithms. Ph.D. thesis, The University of Manchester (2012)
  8. Boumal, N., Absil, P.A.: RTRMC: A Riemannian trust-region method for low-rank matrix completion. Adv. Neural Inf. Process. Syst. 24(NIPS), 406–414 (2011)
  9. Boumal, N., Mishra, B.: The Manopt toolbox. http://www.manopt.org
  10. Brace, I., Manton, J.H.: An improved BFGS-on-manifold algorithm for computing weighted low rank approximations. In Proceedings of 17th International Symposium on Mathematical Theory of Networks and Systems, pp. 1735–1738 (2006)
  11. Byrd Richard H., Khalfan Humaid Fayez, Schnabel Robert B., Analysis of a Symmetric Rank-One Trust Region Method, 10.1137/s1052623493252985
  12. Byrd Richard H., Nocedal Jorge, Schnabel Robert B., Representations of quasi-Newton matrices and their use in limited memory methods, 10.1007/bf01582063
  13. do Carmo, M.P.: Riemannian geometry. Mathematics: Theory & Applications (1992)
  14. Chavel Isaac, Riemannian Geometry : A Modern Introduction, ISBN:9780511616822, 10.1017/cbo9780511616822
  15. Conn A. R., Gould N. I. M., Toint Ph. L., Convergence of quasi-Newton matrices generated by the symmetric rank one update, 10.1007/bf01594934
  16. Conn Andrew R., Gould Nicholas I. M., Toint Philippe L., Trust Region Methods, ISBN:9780898714609, 10.1137/1.9780898719857
  17. Edelman Alan, Arias Tomás A., Smith Steven T., The Geometry of Algorithms with Orthogonality Constraints, 10.1137/s0895479895290954
  18. Gabay D., Minimizing a differentiable function over a differential manifold, 10.1007/bf00934767
  19. Gallivan Kyle A., Qi Chunhong, Absil P.-A., A Riemannian Dennis-Moré Condition, High-Performance Scientific Computing (2012) ISBN:9781447124368 p.281-293, 10.1007/978-1-4471-2437-5_14
  20. Huang, W.: Optimization algorithms on Riemannian manifolds with applications. Ph.D. thesis, Department of Mathematics, Florida State University (2013)
  21. Ishteva Mariya, Absil P.-A., Van Huffel Sabine, De Lathauwer Lieven, Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme, 10.1137/090764827
  22. Jiang, B., Dai, Y.H.: A framework of constraint preserving update schemes for optimization on the Stiefel manifold (2013). ArXiv:1301.0172
  23. Journée M., Bach F., Absil P.-A., Sepulchre R., Low-Rank Optimization on the Cone of Positive Semidefinite Matrices, 10.1137/080731359
  24. Khalfan H. Fayez, Byrd R. H., Schnabel R. B., A Theoretical and Experimental Study of the Symmetric Rank-One Update, 10.1137/0803001
  25. Kleinsteuber Martin, Shen Hao, Blind Source Separation With Compressively Sensed Linear Mixtures, 10.1109/lsp.2011.2181945
  26. Mishra, B., Meyer, G., Bach, F., Sepulchre, R.: Low-rank optimization with trace norm penalty (2011). ArXiv:1112.2318v2
  27. Nocedal, J., Wrigh, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)
  28. O’Neill, B.: Semi-Riemannian geometry. Academic Press Incorporated [Harcourt Brace Jovanovich Publishers] (1983)
  29. Qi, C.: NuMerical OptiMization Methods on RieMannian Manifolds. Ph.D. thesis, DepartMent of Mathematics, Florida State University (2011)
  30. Ring Wolfgang, Wirth Benedikt, Optimization Methods on Riemannian Manifolds and Their Application to Shape Space, 10.1137/11082885x
  31. Sato, H., Iwai, T.: Convergence analysis for the Riemannian conjugate gradient method (2013). ArXiv:1302.0125v1
  32. Savas Berkant, Lim Lek-Heng, Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors, 10.1137/090763172
  33. Seibert, M., Kleinsteuber, M., Hüper, K.: Properties of the BFGS method on Riemannian manifolds. Mathematical System Theory C Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday pp. 395–412 (2013)
  34. Selvan S. E., Amato U., Gallivan K. A., Chunhong Qi, Carfora M. F., Larobina M., Alfano B., Descent Algorithms on Oblique Manifold for Source-Adaptive ICA Contrast, 10.1109/tnnls.2012.2218060
  35. Stiefel E., Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, 10.1007/bf01199559
  36. Theis Fabian J., Cason Thomas P., Absil P. -A., Soft Dimension Reduction for ICA by Joint Diagonalization on the Stiefel Manifold, Independent Component Analysis and Signal Separation (2009) ISBN:9783642005985 p.354-361, 10.1007/978-3-642-00599-2_45
  37. Turaga P., Veeraraghavan A., Srivastava A., Chellappa R., Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition, 10.1109/tpami.2011.52
  38. Vandereycken Bart, Vandewalle Stefan, A Riemannian Optimization Approach for Computing Low-Rank Solutions of Lyapunov Equations, 10.1137/090764566
  39. Wen Zaiwen, Yin Wotao, A feasible method for optimization with orthogonality constraints, 10.1007/s10107-012-0584-1