User menu

Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

Bibliographic reference Zanou, Bidossessi Nadège ; Gailly, Philippe. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.. In: Cellular and Molecular Life Sciences, Vol. 70, p. 4117-4130 (novembre 2013)
Permanent URL
  1. Schmalbruch H., Lewis D.M., Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles, 10.1002/(sici)1097-4598(200004)23:4<617::aid-mus22>;2-y
  2. Irintchev A., Wernig A., Muscle damage and repair in voluntarily running mice: strain and muscle differences, 10.1007/bf00217322
  3. PAPADIMITRIOU J, The process of new plasmalemma formation in focally injured skeletal muscle fibers, 10.1016/1047-8477(90)90016-6
  4. CHARGE S. B. P., Cellular and Molecular Regulation of Muscle Regeneration, 10.1152/physrev.00019.2003
  5. Hagerman Frederick C., Reply to the Preceding Letter : , 10.1249/00005768-198315030-00002
  6. Ciciliot Stefano, Schiaffino Stefano, Regeneration of Mammalian Skeletal Muscle: Basic Mechanisms and Clinical Implications, 10.2174/138161210790883453
  7. Czerwinska Areta M., Streminska Wladyslawa, Ciemerych Maria A., Grabowska Iwona, Mouse gastrocnemius muscle regeneration after mechanical or cardiotoxin injury, 10.5603/fhc.2012.0021
  8. Sakamoto Kei, Nosaka Kazunori, Shimegi Satoshi, Ohmori Hajime, Katsuta Shigeru, Creatine kinase release from regenerated muscles after eccentric contractions in rats, 10.1007/bf00357673
  9. Jackson RC (1970) Exercise-induced renal failure and muscle damage. Proc R Soc Med 63:566–570
  10. Darr KC, Schultz E (1987) Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 63:1816–1821
  11. Tsatalas Themistoklis, Giakas Giannis, Spyropoulos Giannis, Sideris Vasileios, Lazaridis Savvas, Kotzamanidis Christos, Koutedakis Yiannis, The effects of eccentric exercise-induced muscle damage on running kinematics at different speeds, 10.1080/02640414.2012.729135
  12. Vandebrouck Clarisse, Martin Dominique, Schoor Monique Colson-Van, Debaix Huguette, Gailly Philippe, Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers, 10.1083/jcb.200203091
  13. Gailly Philippe, TRP channels in normal and dystrophic skeletal muscle, 10.1016/j.coph.2012.01.018
  14. De Backer F., Vandebrouck C., Gailly P., Gillis J. M., Long-term study of Ca2+homeostasis and of survival in collagenase-isolated muscle fibres from normal andmdxmice, 10.1113/jphysiol.2002.020487
  15. Gailly P., De Backer F., Van Schoor M., Gillis J. M., In situmeasurements of calpain activity in isolated muscle fibres from normal and dystrophin-lackingmdxmice : Calpain activity in single muscle fibres, normal and dystrophic, 10.1113/jphysiol.2007.132191
  16. Monaco Anthony P., Neve Rachael L., Colletti-Feener Chris, Bertelson Corlee J., Kurnit David M., Kunkel Louis M., Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene, 10.1038/323646a0
  17. Hoffman Eric P., Brown Robert H., Kunkel Louis M., Dystrophin: The protein product of the duchenne muscular dystrophy locus, 10.1016/0092-8674(87)90579-4
  18. Moens P., Baatsen P. H. W. W., Mar�chal G., Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch, 10.1007/bf00121296
  19. Petrof B. J., Shrager J. B., Stedman H. H., Kelly A. M., Sweeney H. L., Dystrophin protects the sarcolemma from stresses developed during muscle contraction., 10.1073/pnas.90.8.3710
  20. Zanou Nadège, Iwata Yuko, Schakman Olivier, Lebacq Jean, Wakabayashi Shigeo, Gailly Philippe, Essential role of TRPV2 ion channel in the sensitivity of dystrophic muscle to eccentric contractions, 10.1016/j.febslet.2009.10.033
  21. Ducret Thomas, Vandebrouck Clarisse, Cao My Linh, Lebacq Jean, Gailly Philippe, Functional role of store-operated and stretch-activated channels in murine adult skeletal muscle fibres : Store-operated and stretch-activated channels in skeletal muscle fibres, 10.1113/jphysiol.2006.115154
  22. Chiu David, Creatine Phosphokinase Release as a Measure of Tourniquet Effect on Skeletal Muscle, 10.1001/archsurg.1976.01360190073013
  23. Park C. Y., Pierce S. A., von Drehle M., Ivey K. N., Morgan J. A., Blau H. M., Srivastava D., skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration, 10.1073/pnas.1013493107
  24. Zanou Nadège, Schakman Olivier, Louis Pierre, Ruegg Urs T., Dietrich Alexander, Birnbaumer Lutz, Gailly Philippe, Trpc1 Ion Channel Modulates Phosphatidylinositol 3-Kinase/Akt Pathway during Myoblast Differentiation and Muscle Regeneration, 10.1074/jbc.m112.341784
  25. Tidball J. G., Inflammatory processes in muscle injury and repair, 10.1152/ajpregu.00454.2004
  26. Chazaud Bénédicte, Sonnet Corinne, Lafuste Peggy, Bassez Guillaume, Rimaniol Anne-Cécile, Poron Françoise, Authier François-Jérôme, Dreyfus Patrick A., Gherardi Romain K., Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth, 10.1083/jcb.200212046
  27. MOURKIOTI F, ROSENTHAL N, IGF-1, inflammation and stem cells: interactions during muscle regeneration, 10.1016/
  28. Grounds Miranda D., 10.1023/a:1015234709314
  29. CANTINI MARCELLO, CARRARO UGO, Macrophage-released Factor Stimulates Selectively Myogenic Cells in Primary Muscle Culture : , 10.1097/00005072-199501000-00014
  30. Cantini M., Giurisato E., Radu C., Tiozzo S., Pampinella F., Senigaglia D., Zaniolo G., Mazzoleni F., Vitiello L., Macrophage-secreted myogenic factors: a promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo, 10.1007/s100720200060
  31. Sonnet C., Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems, 10.1242/jcs.02988
  32. SEGAWA M, FUKADA S, YAMAMOTO Y, YAHAGI H, KANEMATSU M, SATO M, ITO T, UEZUMI A, HAYASHI S, MIYAGOESUZUKI Y, Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis, 10.1016/j.yexcr.2008.08.008
  33. Beauchamp Jonathan R., Heslop Louise, Yu David S.W., Tajbakhsh Shahragim, Kelly Robert G., Wernig Anton, Buckingham Margaret E., Partridge Terence A., Zammit Peter S., Expression of Cd34 and Myf5 Defines the Majority of Quiescent Adult Skeletal Muscle Satellite Cells, 10.1083/jcb.151.6.1221
  34. Seale Patrick, Sabourin Luc A, Girgis-Gabardo Adele, Mansouri Ahmed, Gruss Peter, Rudnicki Michael A, Pax7 Is Required for the Specification of Myogenic Satellite Cells, 10.1016/s0092-8674(00)00066-0
  35. Schultz Edward, Jaryszak Debra L., Valliere Charles R., Response of satellite cells to focal skeletal muscle injury, 10.1002/mus.880080307
  36. Seale Patrick, Polesskaya Anna, Rudnicki Michael A., Adult Stem Cell Specification by Wnt Signaling in Muscle Regeneration, 10.4161/cc.2.5.498
  37. Parker Maura H., Seale Patrick, Rudnicki Michael A., Looking back to the embryo: defining transcriptional networks in adult myogenesis, 10.1038/nrg1109
  38. Kuang Shihuan, Kuroda Kazuki, Le Grand Fabien, Rudnicki Michael A., Asymmetric Self-Renewal and Commitment of Satellite Stem Cells in Muscle, 10.1016/j.cell.2007.03.044
  39. Shinin Vasily, Gayraud-Morel Barbara, Gomès Danielle, Tajbakhsh Shahragim, Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells, 10.1038/ncb1425
  40. Scadden David T., The stem-cell niche as an entity of action, 10.1038/nature04957
  41. Artavanis-Tsakonas S, Matsuno K, Fortini M., Notch signaling, 10.1126/science.7716513
  42. Conboy Irina M., Rando Thomas A., The Regulation of Notch Signaling Controls Satellite Cell Activation and Cell Fate Determination in Postnatal Myogenesis, 10.1016/s1534-5807(02)00254-x
  43. Brack Andrew S., Conboy Irina M., Conboy Michael J., Shen Jeanne, Rando Thomas A., A Temporal Switch from Notch to Wnt Signaling in Muscle Stem Cells Is Necessary for Normal Adult Myogenesis, 10.1016/j.stem.2007.10.006
  44. Kelly A.M., Satellite cells and myofiber growth in the rat soleus and extensor digitorum longus muscles, 10.1016/0012-1606(78)90174-4
  45. Chen Yi-Wen, Nader Gustavo A., Baar Keith R., Fedele Mark J., Hoffman Eric P., Esser Karyn A., Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling, 10.1113/jphysiol.2002.021220
  46. Barash I. A., Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse, 10.1152/ajpcell.00211.2003
  47. Ferrari G., Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors, 10.1126/science.279.5356.1528
  48. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394
  49. Torrente Yvan, Belicchi Marzia, Sampaolesi Maurilio, Pisati Federica, Meregalli Mirella, D’Antona Giuseppe, Tonlorenzi Rossana, Porretti Laura, Gavina Manuela, Mamchaoui Kamel, Pellegrino Maria Antonietta, Furling Denis, Mouly Vincent, Butler-Browne Gillian S., Bottinelli Roberto, Cossu Giulio, Bresolin Nereo, Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle, 10.1172/jci20325
  50. Kuang Shihuan, Rudnicki Michael A., The emerging biology of satellite cells and their therapeutic potential, 10.1016/j.molmed.2007.12.004
  51. Lepper C., Partridge T. A., Fan C.-M., An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, 10.1242/dev.067595
  52. Louis M., Zanou N., Van Schoor M., Gailly P., TRPC1 regulates skeletal myoblast migration and differentiation, 10.1242/jcs.037218
  53. Zanou N., Shapovalov G., Louis M., Tajeddine N., Gallo C., Van Schoor M., Anguish I., Cao M. L., Schakman O., Dietrich A., Lebacq J., Ruegg U., Roulet E., Birnbaumer L., Gailly P., Role of TRPC1 channel in skeletal muscle function, 10.1152/ajpcell.00241.2009
  54. Jerkovic Romana, Argentini Carla, Serrano-Sanchez Antonio, Cordonnier Corinne, Schiaffino Stefano, Early Myosin Switching Induced by Nerve Activity in Regenerating Slow Skeletal Muscle., 10.1247/csf.22.147
  55. Schiaffino Stefano, Murgia Marta, Serrano Antonio L., Calabria Elisa, Pallafacchina Giorgia, Lømo Terje, 10.1038/35004013
  56. Serrano A. L., Murgia M., Pallafacchina G., Calabria E., Coniglio P., Lomo T., Schiaffino S., Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth, 10.1073/pnas.231148598
  57. Li Lu, Stefan Melanie I., Le Novère Nicolas, Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII, 10.1371/journal.pone.0043810
  58. Mei Liu H., The role of extracellular matrix in peripheral nerve regeneration: a wound chamber study, 10.1007/bf00310022
  59. Saksela O, Laiho M (1990) Growth factors and the extracellular matrix. Duodecim 106:297–306
  60. Lijnen H. R., Van Hoef B., Lupu F., Moons L., Carmeliet P., Collen D., Function of the Plasminogen/Plasmin and Matrix Metalloproteinase Systems After Vascular Injury in Mice With Targeted Inactivation of Fibrinolytic System Genes, 10.1161/01.atv.18.7.1035
  61. Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell T., Turner D, Rupp R, Hollenberg S, et al., The myoD gene family: nodal point during specification of the muscle cell lineage, 10.1126/science.1846704
  62. Sassoon David, Lyons Gary, Wright Woodring E., Lin Victor, Lassar Andrew, Weintraub Harold, Buckingham Margaret, Expression of two myogenic regulatory factors myogenin and MyoDl during mouse embryogenesis, 10.1038/341303a0
  63. Davis Robert L., Cheng Pei-Feng, Lassar Andrew B., Weintraub Harold, The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation, 10.1016/0092-8674(90)90088-v
  64. Le Grand Fabien, Rudnicki Michael A, Skeletal muscle satellite cells and adult myogenesis, 10.1016/
  65. Choi J., Costa M. L., Mermelstein C. S., Chagas C., Holtzer S., Holtzer H., MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes., 10.1073/pnas.87.20.7988
  66. Davis Robert L., Weintraub Harold, Lassar Andrew B., Expression of a single transfected cDNA converts fibroblasts to myoblasts, 10.1016/0092-8674(87)90585-x
  67. Megeney Lynn A., Rudnicki Michael A., Determination versus differentiation and the MyoD family of transcription factors, 10.1139/o95-080
  68. Rudnicki Michael A., Jaenisch Rudolf, The MyoD family of transcription factors and skeletal myogenesis, 10.1002/bies.950170306
  69. Buckingham M, Houzelstein D, Lyons G, Ontell M, Ott MO, Sassoon D (1992) Expression of muscle genes in the mouse embryo. Symp Soc Exp Biol 46:203–217
  70. Crescenzi M., Fleming T. P., Lassar A. B., Weintraub H., Aaronson S. A., MyoD induces growth arrest independent of differentiation in normal and transformed cells., 10.1073/pnas.87.21.8442
  71. Halevy O., Novitch B., Spicer D., Skapek S., Rhee J., Hannon G., Beach D., Lassar A., Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD, 10.1126/science.7863327
  72. Wilson Elizabeth M., Rotwein Peter, Control of MyoD Function during Initiation of Muscle Differentiation by an Autocrine Signaling Pathway Activated by Insulin-like Growth Factor-II, 10.1074/jbc.m605445200
  73. Sabourin Luc A., Girgis-Gabardo Adele, Seale Patrick, Asakura Atsushi, Rudnicki Michael A., Reduced Differentiation Potential of PrimaryMyoD−/− Myogenic Cells Derived from Adult Skeletal Muscle, 10.1083/jcb.144.4.631
  74. Beylkin Doris Heidysch, Allen David L., Leinwand Leslie A., MyoD, Myf5, and the calcineurin pathway activate the developmental myosin heavy chain genes, 10.1016/j.ydbio.2006.02.049
  75. Bergstrom Donald A., Penn Bennett H., Strand Andrew, Perry Robert L.S., Rudnicki Michael A., Tapscott Stephen J., Promoter-Specific Regulation of MyoD Binding and Signal Transduction Cooperate to Pattern Gene Expression, 10.1016/s1097-2765(02)00481-1
  76. Hasty Paul, Bradley Allan, Morris Julia H., Edmondson Diane G., Venuti Judith M., Olson Eric N., Klein William H., Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene, 10.1038/364501a0
  77. Kassar-Duchossoy Lina, Gayraud-Morel Barbara, Gomès Danielle, Rocancourt Didier, Buckingham Margaret, Shinin Vasily, Tajbakhsh Shahragim, Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice, 10.1038/nature02876
  78. Weintraub Harold, The MyoD family and myogenesis: Redundancy, networks, and thresholds, 10.1016/0092-8674(93)90610-3
  79. Buckingham Margaret, Skeletal muscle formation in vertebrates, 10.1016/s0959-437x(00)00215-x
  80. Molkentin Jeffery D., Black Brian L., Martin James F., Olson Eric N., Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins, 10.1016/0092-8674(95)90139-6
  81. Molkentin J. D., Olson E. N., Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors., 10.1073/pnas.93.18.9366
  82. Buckingham Margaret, Skeletal muscle progenitor cells and the role of Pax genes, 10.1016/j.crvi.2007.03.015
  83. Relaix Frédéric, Rocancourt Didier, Mansouri Ahmed, Buckingham Margaret, A Pax3/Pax7-dependent population of skeletal muscle progenitor cells, 10.1038/nature03594
  84. Buckingham Margaret, Bajard Lola, Daubas Philippe, Esner Milan, Lagha Mounia, Relaix Frédéric, Rocancourt Didier, Myogenic progenitor cells in the mouse embryo are marked by the expression of Pax3/7 genes that regulate their survival and myogenic potential, 10.1007/s00429-006-0122-0
  85. Buckingham Margaret E, Muscle: the regulation of myogenesis, 10.1016/0959-437x(94)90142-p
  86. Kuang Shihuan, Chargé Sophie B., Seale Patrick, Huh Michael, Rudnicki Michael A., Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis, 10.1083/jcb.200508001
  87. Karalaki M, Fili S, Philippou A, Koutsilieris M (2009) Muscle regeneration: cellular and molecular events. In Vivo 23:779–796
  88. Jiao Shuang, Ren Hongxia, Li Yun, Zhou Jianfeng, Duan Cunming, Lu Ling, Differential regulation of IGF-I and IGF-II gene expression in skeletal muscle cells, 10.1007/s11010-012-1479-4
  89. Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17:481–517
  90. Engert J. C., Proliferation precedes differentiation in IGF-I-stimulated myogenesis, 10.1083/jcb.135.2.431
  91. Allen Ronald E., Boxhorn Linda K., Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor, 10.1002/jcp.1041380213
  92. Doumit Matthew E., Cook Douglas R., Merkel Robert A., Fibroblast growth factor, epidermal growth factor, insulin-like growth factors, and platelet-derived growth factor-BB stimulate proliferation of clonally derived porcine myogenic satellite cells, 10.1002/jcp.1041570216
  93. Vandenburgh HH, Karlisch P, Shansky J, Feldstein R (1991) Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Physiol 260:C475–C484
  94. Owino Vivian, Yang Shi Yu, Goldspink Geoffrey, Age-related loss of skeletal muscle function and the inability to express the autocrine form of insulin-like growth factor-1 (MGF) in response to mechanical overload, 10.1016/s0014-5793(01)02825-3
  95. Hill Maria, Goldspink Geoffrey, Expression and Splicing of the Insulin-Like Growth Factor Gene in Rodent Muscle is Associated with Muscle Satellite (stem) Cell Activation following Local Tissue Damage, 10.1113/jphysiol.2002.035832
  96. Yang Shi Yu, Goldspink Geoffrey, Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation, 10.1016/s0014-5793(02)02918-6
  97. Dobrowolny Gabriella, Giacinti Cristina, Pelosi Laura, Nicoletti Carmine, Winn Nadine, Barberi Laura, Molinaro Mario, Rosenthal Nadia, Musarò Antonio, Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model, 10.1083/jcb.200407021
  98. Musaro A., Giacinti C., Borsellino G., Dobrowolny G., Pelosi L., Cairns L., Ottolenghi S., Cossu G., Bernardi G., Battistini L., Molinaro M., Rosenthal N., Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1, 10.1073/pnas.0303792101
  99. Florini JR, Magri KA, Ewton DZ, James PL, Grindstaff K, Rotwein PS (1991) “Spontaneous” differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. J Biol Chem 266:15917–15923
  100. Ge Yejing, Sun Yuting, Chen Jie, IGF-II is regulated by microRNA-125b in skeletal myogenesis, 10.1083/jcb.201007165
  101. Wilson Elizabeth M., Hsieh Marlene M., Rotwein Peter, Autocrine Growth Factor Signaling by Insulin-like Growth Factor-II Mediates MyoD-stimulated Myocyte Maturation, 10.1074/jbc.c300299200
  102. Ge Y., Wu A.-L., Warnes C., Liu J., Zhang C., Kawasome H., Terada N., Boppart M. D., Schoenherr C. J., Chen J., mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms, 10.1152/ajpcell.00248.2009
  103. Levinovitz A., Activation of insulin-like growth factor II expression during skeletal muscle regeneration in the rat: correlation with myotube formation, 10.1210/me.6.8.1227
  104. EDWALL D., SCHALLING M., JENNISCHE E., NORSTEDT G., Induction of Insulin-Like Growth Factor I Messenger Ribonucleic Acid during Regeneration of Rat Skeletal Muscle*, 10.1210/endo-124-2-820
  106. Barton Elisabeth R., Morris Linda, Musaro Antonio, Rosenthal Nadia, Sweeney H. Lee, Muscle-specific expression of insulin-like growth factor I counters muscle decline inmdxmice, 10.1083/jcb.200108071
  107. Barton-Davis, Shoturma, Sweeney, Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle, 10.1046/j.1365-201x.1999.00618.x
  108. SEMSARIAN Christopher, SUTRAVE Pramod, RICHMOND David R., GRAHAM Robert M., Insulin-like growth factor (IGF-I) induces myotube hypertrophy associated with an increase in anaerobic glycolysis in a clonal skeletal-muscle cell model, 10.1042/0264-6021:3390443
  109. Musarò Antonio, McCullagh Karl, Paul Angelika, Houghton Leslie, Dobrowolny Gabriella, Molinaro Mario, Barton Elisabeth R., L Sweeney H., Rosenthal Nadia, 10.1038/84839
  110. Clemmons David R., Role of IGF-I in skeletal muscle mass maintenance, 10.1016/j.tem.2009.04.002
  111. Coolican Sharon A., Samuel Derina S., Ewton Daina Z., McWade Frank J., Florini James R., The Mitogenic and Myogenic Actions of Insulin-like Growth Factors Utilize Distinct Signaling Pathways, 10.1074/jbc.272.10.6653
  112. Fuentes E. N., Bjornsson B. T., Valdes J. A., Einarsdottir I. E., Lorca B., Alvarez M., Molina A., IGF-I/PI3K/Akt and IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder, 10.1152/ajpregu.00535.2010
  113. Wilson Elizabeth M., Rotwein Peter, Selective Control of Skeletal Muscle Differentiation by Akt1, 10.1074/jbc.c600315200
  114. Rotwein Peter, Wilson Elizabeth M., Distinct actions of Akt1 and Akt2 in skeletal muscle differentiation, 10.1002/jcp.21692
  115. Rommel Christian, Bodine Sue C., Clarke Brian A., Rossman Roni, Nunez Lorna, Stitt Trevor N., Yancopoulos George D., Glass David J., 10.1038/ncb1101-1009
  116. Bodine Sue C., Stitt Trevor N., Gonzalez Michael, Kline William O., Stover Gretchen L., Bauerlein Roy, Zlotchenko Elizabeth, Scrimgeour Angus, Lawrence John C., Glass David J., Yancopoulos George D., 10.1038/ncb1101-1014
  117. Jiang B.-H., Aoki M., Zheng J. Z., Li J., Vogt P. K., Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B, 10.1073/pnas.96.5.2077
  118. Sasai Nobuaki, Agata Nobuhide, Inoue-Miyazu Masumi, Kawakami Keisuke, Kobayashi Kunihiko, Sokabe Masahiro, Hayakawa Kimihide, Involvement of PI3K/Akt/TOR pathway in stretch-induced hypertrophy of myotubes, 10.1002/mus.21473
  119. Wilson E. M., Permissive Roles of Phosphatidyl Inositol 3-Kinase and Akt in Skeletal Myocyte Maturation, 10.1091/mbc.e03-05-0351
  120. Leevers Sally J, Vanhaesebroeck Bart, Waterfield Michael D, Signalling through phosphoinositide 3-kinases: the lipids take centre stage, 10.1016/s0955-0674(99)80029-5
  121. Cleasby Mark E., Reinten Tracie A., Cooney Gregory J., James David E., Kraegen Edward W., Functional Studies of Akt Isoform Specificity in Skeletal Musclein Vivo; Maintained Insulin Sensitivity Despite Reduced Insulin Receptor Substrate-1 Expression, 10.1210/me.2006-0154
  122. Glass David J., PI3 Kinase Regulation of Skeletal Muscle Hypertrophy and Atrophy, Current Topics in Microbiology and Immunology (2010) ISBN:9783642136627 p.267-278, 10.1007/82_2010_78
  123. Park In-Hyun, Erbay Ebru, Nuzzi Paul, Chen Jie, Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1, 10.1016/j.yexcr.2005.05.017
  124. Willett Mark, Cowan Joanne L., Vlasak Markete, Coldwell Mark J., Morley Simon J., Inhibition of mammalian target of rapamycin (mTOR) signalling in C2C12 myoblasts prevents myogenic differentiation without affecting the hyperphosphorylation of 4E-BP1, 10.1016/j.cellsig.2009.05.009
  125. Hribal Marta L., Nakae Jun, Kitamura Tadahiro, Shutter John R., Accili Domenico, Regulation of insulin-like growth factor–dependent myoblast differentiation by Foxo forkhead transcription factors, 10.1083/jcb.200212107
  126. Glass David J., Skeletal muscle hypertrophy and atrophy signaling pathways, 10.1016/j.biocel.2005.04.018
  127. Blaauw B., Canato M., Agatea L., Toniolo L., Mammucari C., Masiero E., Abraham R., Sandri M., Schiaffino S., Reggiani C., Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation, 10.1096/fj.09-131870
  128. Kalista S., Schakman O., Gilson H., Lause P., Demeulder B., Bertrand L., Pende M., Thissen J. P., The Type 1 Insulin-Like Growth Factor Receptor (IGF-IR) Pathway Is Mandatory for the Follistatin-Induced Skeletal Muscle Hypertrophy, 10.1210/en.2011-1687
  129. Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84:1716–1722
  130. Awede Bonaventure, Thissen Jean-Paul, Gailly Phillipe, Lebacq Jean, Regulation of IGF-I, IGFBP-4 and IGFBP-5 gene expression by loading in mouse skeletal muscle, 10.1016/s0014-5793(99)01469-6
  131. Rosenblatt J. David, Yong David, Parry David J., Satellite cell activity is required for hypertrophy of overloaded adult rat muscle, 10.1002/mus.880170607
  132. Li P., Resident stem cells are not required for exercise-induced fiber-type switching and angiogenesis but are necessary for activity-dependent muscle growth, 10.1152/ajpcell.00532.2005
  133. Gilson H., Schakman O., Kalista S., Lause P., Tsuchida K., Thissen J.-P., Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin, 10.1152/ajpendo.00193.2009
  134. Miyazaki Mitsunori, McCarthy John J., Fedele Mark J., Esser Karyn A., Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling : Overload-induced mTOR activation is independent of PI3K/Akt signalling, 10.1113/jphysiol.2011.205658
  135. Shi X., Muscle stem cells in development, regeneration, and disease, 10.1101/gad.1419406
  136. Leshem Yael, Spicer Douglas B., Gal-Levi Ronit, Halevy Orna, Hepatocyte growth factor (HGF) inhibits skeletal muscle cell differentiation: A role for the bHLH protein twist and the cdk inhibitor p27, 10.1002/(sici)1097-4652(200007)184:1<101::aid-jcp11>;2-d
  137. Floss T., Arnold H.-H., Braun T., A role for FGF-6 in skeletal muscle regeneration, 10.1101/gad.11.16.2040
  138. Fujita J, Tsujinaka T, Yano M, Ogawa J, Morita T, Taniguchi H, Shiozaki H, Monden M (1998) Participation of interleukin-6 to skeletal muscle proteolysis: the effect of IL-6 administration on mRNA expression by the skeletal muscle cell proteolytic system. Nihon Geka Gakkai Zasshi 99:332
  139. LANGEN R. C. J., Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization, 10.1096/fj.03-0251com
  140. Warren GL, Hulderman T, Jensen N, McKinstry M, Mishra M, Luster MI, Simeonova PP (2002) Physiological role of tumor necrosis factor alpha in traumatic muscle injury. FASEB J 16:1630–1632
  141. Alvarez Belén, Quinn LeBris S, Busquets Sı́lvia, Quiles Maria T, López-Soriano Francisco J, Argilés Josep M, Tumor necrosis factor-α exerts interleukin-6-dependent and -independent effects on cultured skeletal muscle cells, 10.1016/s0167-4889(01)00167-7
  142. Baeza-Raja B., p38 MAPK-induced Nuclear Factor- B Activity Is Required for Skeletal Muscle Differentiation: Role of Interleukin-6, 10.1091/mbc.e03-08-0585
  143. Florini J R, Ewton D Z, Magri K A, Hormones, Growth Factors, and Myogenic Differentiation, 10.1146/
  144. Langley Brett, Thomas Mark, Bishop Amy, Sharma Mridula, Gilmour Stewart, Kambadur Ravi, Myostatin Inhibits Myoblast Differentiation by Down-regulating MyoD Expression, 10.1074/jbc.m204291200
  145. McFarlane C., Hui G. Z., Amanda W. Z. W., Lau H. Y., Lokireddy S., XiaoJia G., Mouly V., Butler-Browne G., Gluckman P. D., Sharma M., Kambadur R., Human myostatin negatively regulates human myoblast growth and differentiation, 10.1152/ajpcell.00012.2011
  146. Grobet Luc, Royo Martin Luis José, Poncelet Dominique, Pirottin Dimitri, Brouwers Benoit, Riquet Juliette, Schoeberlein Andreina, Dunner Susana, Ménissier François, Massabanda Julio, Fries Ruedi, Hanset Roger, Georges Michel, A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle, 10.1038/ng0997-71
  147. White Jason, Davies Marilyn, Grounds Miranda, Leukaemia inhibitory factor increases myoblast replication and survival and affects extracellular matrix production: combined in vivo and in vitro studies in post-natal skeletal muscle, 10.1007/s004410100432
  148. Phillips D., Follistatin has a biphasic response but follicle-stimulating hormone is unchanged during an inflammatory episode in growing lambs, 10.1677/joe.0.1560077
  149. Hu Shao-Yang, Tai Chen-Chen, Li Yen-Hsing, Wu Jen-Leih, Progranulin compensates for blocked IGF-1 signaling to promote myotube hypertrophy in C2C12 myoblastsviathe PI3K/Akt/mTOR pathway, 10.1016/j.febslet.2012.07.077
  150. Li Yen-Hsing, Chen Hsu-Yu, Li Ya-Wen, Wu Sung-Yu, Wangta-Liu, Lin Gen-Hwa, Hu Shao-Yang, Chang Zen-Kuei, Gong Hong-Yi, Liao Chia-Hsuan, Chiang Keng-Yu, Huang Chang-Wen, Wu Jen-Leih, Progranulin regulates zebrafish muscle growth and regeneration through maintaining the pool of myogenic progenitor cells, 10.1038/srep01176
  151. Sun L., Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation, 10.1242/jcs.01142
  152. Small E. M., O'Rourke J. R., Moresi V., Sutherland L. B., McAnally J., Gerard R. D., Richardson J. A., Olson E. N., Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486, 10.1073/pnas.1000300107
  153. Schultz Edward, Jaryszak Debra L., Effects of skeletal muscle regeneration on the proliferation potential of satellite cells, 10.1016/0047-6374(85)90059-4
  154. Miyabara Elen H., Conte Talita C., Silva Meiricris T., Baptista Igor L., Bueno Carlos, Fiamoncini Jarlei, Lambertucci Rafael H., Serra Carmen S., Brum Patricia C., Pithon-curi Tania, Curi Rui, Aoki Marcelo S., Oliveira Antonio C., Moriscot Anselmo S., Mammalian target of rapamycin complex 1 is involved in differentiation of regenerating myofibers in vivo : mTORC1 in Muscle Regeneration, 10.1002/mus.21754
  155. Florini James R., Ewton Daina Z., Roof Suzette L., Insulin-Like Growth Factor-I Stimulates Terminal Myogenic Differentiation by Induction of Myogenin Gene Expression, 10.1210/mend-5-5-718
  156. Xu Qing, Wu Zhenguo, The Insulin-like Growth Factor-Phosphatidylinositol 3-Kinase-Akt Signaling Pathway Regulates Myogenin Expression in Normal Myogenic Cells but Not in Rhabdomyosarcoma-derived RD Cells, 10.1074/jbc.m005030200
  157. Hsu H.H., Zdanowicz M.M., Agarwal V.R., Speiser P.W., Expression of Myogenic Regulatory Factors in Normal and Dystrophic Mice: Effects of IGF-1 Treatment, 10.1006/bmme.1997.2570
  158. Imanaka M et al (2008) Growth hormone stimulates mechano growth factor expression and activates myoblast transformation in C2C12 cells. Kobe J Med Sci 54:E46–E54
  159. Fernández Ana M., Dupont Joëlle, Farrar Roger P., Lee Sukho, Stannard Bethel, Le Roith Derek, Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle, 10.1172/jci0213503
  160. Miyake Masato, Hayashi Shinichiro, Sato Tomomi, Taketa Yoshikazu, Watanabe Kouichi, Hayashi Shinji, Tanaka Sachi, Ohwada Shyuichi, Aso Hisashi, Yamaguchi Takahiro, Myostatin and MyoD family expression in skeletal muscle of IGF-1 knockout mice, 10.1016/j.cellbi.2007.05.007
  161. Zhang L., Wang X. H., Wang H., Du J., Mitch W. E., Satellite Cell Dysfunction and Impaired IGF-1 Signaling Cause CKD-Induced Muscle Atrophy, 10.1681/asn.2009060571
  162. Nijtmans L. G.J., Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins, 10.1093/emboj/19.11.2444
  163. Sun Yuting, Ge Yejing, Drnevich Jenny, Zhao Yong, Band Mark, Chen Jie, Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis, 10.1083/jcb.200912093
  164. Bartel David P, MicroRNAs, 10.1016/s0092-8674(04)00045-5
  165. Bartel David P., MicroRNAs: Target Recognition and Regulatory Functions, 10.1016/j.cell.2009.01.002
  166. Chen Jian-Fu, Mandel Elizabeth M, Thomson J Michael, Wu Qiulian, Callis Thomas E, Hammond Scott M, Conlon Frank L, Wang Da-Zhi, The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation, 10.1038/ng1725
  167. Aguiar AF, Vechetti-Junior IJ, Alves de Souza RW, Castan EP, Milanezi-Aguiar RC, Padovani CR, Carvalho RF, Silva MD (2012) Myogenin, MyoD and IGF-I regulate muscle mass but not fiber-type conversion during resistance training in rats. Int J Sports Med (Epub ahead of print)
  168. Crist Colin G., Montarras Didier, Buckingham Margaret, Muscle Satellite Cells Are Primed for Myogenesis but Maintain Quiescence with Sequestration of Myf5 mRNA Targeted by microRNA-31 in mRNP Granules, 10.1016/j.stem.2012.03.011
  169. Gayraud-Morel B., Chretien F., Jory A., Sambasivan R., Negroni E., Flamant P., Soubigou G., Coppee J.-Y., Di Santo J., Cumano A., Mouly V., Tajbakhsh S., Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells, 10.1242/jcs.097006
  170. Mangiacapra F. J., Paradoxical decrease in myf-5 messenger RNA levels during induction of myogenic differentiation by insulin-like growth factors, 10.1210/me.6.12.2038
  171. PEREZRUIZ A, GNOCCHI V, ZAMMIT P, Control of Myf5 activation in adult skeletal myonuclei requires ERK signalling, 10.1016/j.cellsig.2007.03.003
  172. Ijuin Takeshi, Takenawa Tadaomi, Role of Phosphatidylinositol 3,4,5-Trisphosphate (PIP3) 5-Phosphatase Skeletal Muscle- and Kidney-enriched Inositol Polyphosphate Phosphatase (SKIP) in Myoblast Differentiation, 10.1074/jbc.m112.388785
  173. Ijuin T., Takenawa T., SKIP Negatively Regulates Insulin-Induced GLUT4 Translocation and Membrane Ruffle Formation, 10.1128/mcb.23.4.1209-1220.2003
  174. Ijuin T., Yu Y. E., Mizutani K., Pao A., Tateya S., Tamori Y., Bradley A., Takenawa T., Increased Insulin Action in SKIP Heterozygous Knockout Mice, 10.1128/mcb.01990-06
  175. Huang Mian-Bo, Xu Hui, Xie Shu-Juan, Zhou Hui, Qu Liang-Hu, Insulin-Like Growth Factor-1 Receptor Is Regulated by microRNA-133 during Skeletal Myogenesis, 10.1371/journal.pone.0029173
  176. McLellan A. S., An E box in the exon 1 promoter regulates insulin-like growth factor-I expression in differentiating muscle cells, 10.1152/ajpcell.00345.2005