User menu

Rational design of the electrode morphology for oxygen evolution – enhancing the performance for catalytic water oxidation

Bibliographic reference Zeradjanin, Aleksandar R. ; Topalov, Angel A. ; Van Overmeere, Quentin ; Cherevko, Serhiy ; Chen, Xingxing ; et. al. Rational design of the electrode morphology for oxygen evolution – enhancing the performance for catalytic water oxidation. In: RSC Advances, Vol. 4, p. 9579-9587 (2014)
Permanent URL
  1. Redclift Michael, Sustainable development and global environmental change, 10.1016/0959-3780(92)90034-5
  2. Lewis N. S., Nocera D. G., Powering the planet: Chemical challenges in solar energy utilization, 10.1073/pnas.0603395103
  3. Vesborg Peter C. K., Jaramillo Thomas F., Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy, 10.1039/c2ra20839c
  4. Greeley Jeffrey, Markovic Nenad M., The road from animal electricity to green energy: combining experiment and theory in electrocatalysis, 10.1039/c2ee21754f
  5. Schouten K. J. P., Kwon Y., van der Ham C. J. M., Qin Z., Koper M. T. M., A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes, 10.1039/c1sc00277e
  6. Subbaraman Ram, Tripkovic Dusan, Chang Kee-Chul, Strmcnik Dusan, Paulikas Arvydas P., Hirunsit Pussana, Chan Maria, Greeley Jeff, Stamenkovic Vojislav, Markovic Nenad M., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts, 10.1038/nmat3313
  7. Trasatti S, Electrocatalysis: understanding the success of DSA®, 10.1016/s0013-4686(00)00338-8
  8. Katsounaros, Angew. Chem., Ind. Ed., 51, 12613 (2012)
  9. Dau Holger, Limberg Christian, Reier Tobias, Risch Marcel, Roggan Stefan, Strasser Peter, The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis, 10.1002/cctc.201000126
  10. Koper Marc T.M., Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis, 10.1016/j.jelechem.2010.10.004
  11. Bockris John O'M., The Electrocatalysis of Oxygen Evolution on Perovskites, 10.1149/1.2115565
  12. Man Isabela C., Su Hai-Yan, Calle-Vallejo Federico, Hansen Heine A., Martínez José I., Inoglu Nilay G., Kitchin John, Jaramillo Thomas F., Nørskov Jens K., Rossmeisl Jan, Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces, 10.1002/cctc.201000397
  13. Suntivich J., May K. J., Gasteiger H. A., Goodenough J. B., Shao-Horn Y., A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles, 10.1126/science.1212858
  14. García-Mota Mónica, Bajdich Michal, Viswanathan Venkatasubramanian, Vojvodic Aleksandra, Bell Alexis T., Nørskov Jens K., Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides, 10.1021/jp306303y
  15. Martelli G.N., Ornelas R., Faita G., Deactivation mechanisms of oxygen evolving anodes at high current densities, 10.1016/0013-4686(94)85134-4
  16. Vogt H., Interfacial supersaturation at gas evolving electrodes, 10.1007/bf00234819
  17. Vogt H., The actual current density of gas-evolving electrodes—Notes on the bubble coverage, 10.1016/j.electacta.2012.05.124
  18. Vogt H., The rate of gas evolution of electrodes—I. An estimate of the efficiency of gas evolution from the supersaturation of electrolyte adjacent to a gas-evolving electrode, 10.1016/0013-4686(84)87043-7
  19. Zeradjanin Aleksandar R., La Mantia Fabio, Masa Justus, Schuhmann Wolfgang, Utilization of the catalyst layer of dimensionally stable anodes—Interplay of morphology and active surface area, 10.1016/j.electacta.2012.04.101
  20. Trieu Vinh, Schley Bernd, Natter Harald, Kintrup Jürgen, Bulan Andreas, Hempelmann Rolf, RuO2-based anodes with tailored surface morphology for improved chlorine electro-activity, 10.1016/j.electacta.2012.05.122
  21. Trasatti S., Electrocatalysis in the anodic evolution of oxygen and chlorine, 10.1016/0013-4686(84)85004-5
  22. Zeradjanin Aleksandar R., Ventosa Edgar, Bondarenko Alexander S., Schuhmann Wolfgang, Evaluation of the Catalytic Performance of Gas-Evolving Electrodes using Local Electrochemical Noise Measurements, 10.1002/cssc.201200262
  23. Zeradjanin Aleksandar R., Schilling Thorsten, Seisel Sabine, Bron Michael, Schuhmann Wolfgang, Visualization of Chlorine Evolution at Dimensionally Stable Anodes by Means of Scanning Electrochemical Microscopy, 10.1021/ac200677g
  24. Topalov Angel A., Katsounaros Ioannis, Auinger Michael, Cherevko Serhiy, Meier Josef C., Klemm Sebastian O., Mayrhofer Karl J. J., Dissolution of Platinum: Limits for the Deployment of Electrochemical Energy Conversion?, 10.1002/anie.201207256
  25. Cherevko Serhiy, Topalov Angel A., Zeradjanin Aleksandar R., Katsounaros Ioannis, Mayrhofer Karl J. J., Gold dissolution: towards understanding of noble metal corrosion, 10.1039/c3ra42684j
  26. KIM K, X-Ray photoelectron spectroscopic studies of ruthenium-oxygen surfaces, 10.1016/0021-9517(74)90184-5
  27. Klemm Sebastian O., Topalov Angel A., Laska Claudius A., Mayrhofer Karl J.J., Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS, 10.1016/j.elecom.2011.10.017
  28. Topalov Angel A., Katsounaros Ioannis, Meier Josef C., Klemm Sebastian O., Mayrhofer Karl J. J., Development and integration of a LabVIEW-based modular architecture for automated execution of electrochemical catalyst testing, 10.1063/1.3660814
  29. Over Herbert, Atomic scale insights into electrochemical versus gas phase oxidation of HCl over RuO2-based catalysts: A comparative review, 10.1016/j.electacta.2012.12.099
  30. Lee Jaeyoung, Jeong Beomgyun, Ocon Joey D., Oxygen electrocatalysis in chemical energy conversion and storage technologies, 10.1016/j.cap.2012.08.008
  31. Chen Ruiyong, Trieu Vinh, Zeradjanin Aleksandar R., Natter Harald, Teschner Detre, Kintrup Jürgen, Bulan Andreas, Schuhmann Wolfgang, Hempelmann Rolf, Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction, 10.1039/c2cp41163f
  32. Delannay F., Warren P., On crack interaction and crack density in strain-induced cracking of brittle films on ductile substrates, 10.1016/0956-7151(91)90193-5
  33. Shannon R.D., Synthesis and properties of two new members of the rutile family RhO2 and PtO2, 10.1016/0038-1098(68)90019-7
  34. Gaudet J., Tavares A. C., Trasatti S., Guay D., Physicochemical Characterization of Mixed RuO2−SnO2Solid Solutions, 10.1021/cm048129l
  35. Kötz R., Stucki S., Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, 10.1016/0013-4686(86)80153-0
  36. Chen Ruiyong, Trieu Vinh, Schley Bernd, Natter Harald, Kintrup Jürgen, Bulan Andreas, Weber Rainer, Hempelmann Rolf, Anodic Electrocatalytic Coatings for Electrolytic Chlorine Production: A Review, 10.1524/zpch.2013.0338
  37. Angelinetta C., Trasatti S., Atanososka Lj.D., Atanasoski R.T., Surface properties of RuO2 + IrO2 mixed oxide electrodes, 10.1016/0022-0728(86)80122-x
  38. Burke Laurence D., Murphy Oliver J., O'Neill John F., The important role of surface area in the electrochemical behaviour of RuO2 electrodes, 10.1016/s0022-0728(77)80037-5
  39. Burke Laurence D., Murphy Oliver J., Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes, 10.1016/s0022-0728(79)80299-5
  40. Burke Laurence D., Murphy Oliver J., Surface area—Voltammetric charge correlation for RuO2/TiO2-based anodes, 10.1016/s0022-0728(80)80005-2
  41. Ardizzone S., Surface Structure of Ruthenium Dioxide Electrodes and Kinetics of Chlorine Evolution, 10.1149/1.2124251
  42. Ardizzone S., Fregonara G., Trasatti S., “Inner” and “outer” active surface of RuO2 electrodes, 10.1016/0013-4686(90)85068-x
  43. Rolison D. R., Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity, 10.1126/science.1082332
  44. Evdokimov S. V., Kinetics of chlorine evolution on dimensionally stable anodes at high currents: Extending the concept of a self-accelerating electrode process, 10.1007/bf02827966
  45. Evdokimov S. V., Self-accelerating chlorine evolution on porous anodes of finite thickness, 10.1007/bf02757411
  46. Trasatti S., Petrii O.A., Real surface area measurements in electrochemistry, 10.1016/0022-0728(92)80162-w
  47. Savinell R. F., Electrochemically Active Surface Area, 10.1149/1.2086468
  48. Calderon Erika Herrera, Katsaounis Alexandros, Wüthrich Rolf, Mandin Philippe, Foti György, Comninellis Christos, Effectiveness factor of fast (Fe3+/Fe2+), moderate (Cl2/Cl−) and slow (O2/H2O) redox couples using IrO2-based electrodes of different loading, 10.1007/s10800-009-9886-2
  49. Bratsch Steven G., Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K, 10.1063/1.555839
  50. Zeradjanin Aleksandar R., Menzel Nadine, Strasser Peter, Schuhmann Wolfgang, Role of Water in the Chlorine Evolution Reaction at RuO2-Based Electrodes-Understanding Electrocatalysis as a Resonance Phenomenon, 10.1002/cssc.201200193
  51. Wohlfahrt-Mehrens M., Heitbaum J., Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry, 10.1016/0022-0728(87)85237-3
  52. Willsau J., Wolter O., Heitbaum J., Does the oxide layer take part in the oxygen evolution reaction on platinum?, 10.1016/0022-0728(85)80050-4
  53. Diaz-Morales Oscar, Calle-Vallejo Federico, de Munck Casper, Koper Marc T. M., Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism, 10.1039/c3sc50301a
  54. Zeng Kai, Zhang Dongke, Recent progress in alkaline water electrolysis for hydrogen production and applications, 10.1016/j.pecs.2009.11.002
  55. Tilak B. V., Birss V. I., Wang J., Chen C.-P., Rangarajan S. K., Deactivation of Thermally Formed Ru/Ti Oxide Electrodes: An AC Impedance Characterization Study, 10.1149/1.1388630
  56. Pshenichnikov A. G., Chirkov Yu. G., Rostokin V. I., 10.1023/a:1016832702152
  57. Malenkov I. G., Detachment frequency as a function of size for vapor bubbles, 10.1007/bf01122590