User menu

Clustering of patient’s trajectories with an auto-stopped bisecting K-Medoids algorithm

Bibliographic reference Fei, Hongying ; Meskens, Nadine. Clustering of patient’s trajectories with an auto-stopped bisecting K-Medoids algorithm. In: Journal of Mathematical Modelling and Algorithms, Vol. 12, no.2, p. 135-154 (June 2013)
Permanent URL http://hdl.handle.net/2078/138109
  1. American College of Emergency Physicians, ACEP: Responding to Emergency Department Crowding: A Guidebook for Chapters (2002)
  2. Hall Randolph, Belson David, Murali Pavan, Dessouky Maged, Modeling Patient Flows Through the Healthcare System, International Series in Operations Research & Management Science (2006) ISBN:9780387336350 p.1-44, 10.1007/978-0-387-33636-7_1
  3. Cerdá Emilio, de Pablos Laura, Rodriguez Maria V., Waiting Lists for Surgery, International Series in Operations Research & Management Science (2006) ISBN:9780387336350 p.151-187, 10.1007/978-0-387-33636-7_6
  4. Cardoen, B., Demeulemeester, E.: Evaluating the Capacity of Clinical Pathways through Discrete-Event Simulation, KULeuven Department of Department of Decision Sciences and Information Management Working Paper No. KBI 0712. Available at SSRN: http://ssrn.com/abstract=1093290 (2007)
  5. Zander, K.: Managing Outcomes Through Collaborative Care. American Hospital Publishing Inc., Chicago (1995)
  6. Johnson Sue, Pathway to the heart of care quality : While many have argued that care pathways won’t work in medical areas such as myocardial infarction, Sue Johnson says that the Ashford Trust experience proves otherwise, 10.7748/nm.1.8.26.s21
  7. Zander, K.: Integrated care pathways: eleven international trends. Journal of Integrated Care Pathways 6, 101–107 (2002)
  8. Vanhaecht K., Bollmann M., Bower K., Gallagher C., Gardini A., Guezo J., Jansen U., Massoud R., Moody K., Sermeus W., Van Zelm R., Whittle C., Yazbeck A.-M., Zander K., Panella M., Prevalence and use of clinical pathways in 23 countries - an international survey by the European Pathway Association, 10.1258/j.jicp.2006.124
  9. Hindle Don, Yazbeck Anne-Marie, Clinical pathways in 17 European Union countries: a purposive survey, 10.1071/ah050094
  10. DE BLESER LEENTJE, DEPREITERE ROELAND, WAELE KATRIJN DE, VANHAECHT KRIS, VLAYEN JOAN, SERMEUS WALTER, Defining pathways, 10.1111/j.1365-2934.2006.00702.x
  11. Framinan, J.M., Parra, C.L., Perez, P., Montes, M.: Guidelines for conducting business process modelling as support to healthcare process management. In: International conference on industrial engineering and systems management, pp. 1–14 (2005)
  12. Henkel, M., Johannesson, P., Perjons, E.: Value and goal modeling in healthcare. In: Proceeding of the 12th International Symposium on Health Information Management Research (ISHIMR2007). Sheffield, UK (2007)
  13. Ren, Y., Kiesler, S., Fussell, S., Scupelli, P.: Trajectories in multiple group coordination: a field study of hospital operating suites. In: 40th Annual Hawaii International Conference on System Sciences (HICSS’07). Available at http://doi.ieeecomputersociety.org/10.1109/HICSS.2007.578 (2007)
  14. Ramis F.J., Palma J.L., Baesler F.F., The use of simulation for process improvement at an ambulatory surgery center, 10.1109/wsc.2001.977462
  15. Niu, Q., Peng, Q., ElMekkawy, T., Tan, Y.Y., Bryant, H., Bernaerdt, L.: Performance analysis of the operating room using simulation. In: Proceeding of The Canadian Design Engineering Network (CDEN) and the Canadian Congress on Engineering Education (CCEE), pp. 22–24. Winnipeg, Manitoba, Canada (2007)
  16. Isken Mark W., Rajagopalan Balaji, 10.1023/a:1014814111524
  17. Bellazzi, R., Larizza, C., Montani, S., Stefanelli, M.: Intra-patient learning by combing clustering and temporal abstractions. In: Working Notes of the Workshop of Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP99) at the AMIA 1999 Annual Symposium, Washington, DC, USA (1999)
  18. Forthman, M.T., Dove, H.G., Wooster, L.D.: Episode treatment groups (ETGs): a patient classification system for measuring outcomes performance by episode of illness. Top Health Inform Manage 21(2), 51–61 (2000)
  19. Brun J. G., Sjogren's syndrome in an out-patient clinic: classification of patients according to the preliminary European criteria and the proposed modified European criteria, 10.1093/rheumatology/41.3.301
  20. Maruster, L., Weijters, T., Vries, G., Van den Bosch, A., Daelemans, W.: Logistic-based patient grouping for multi-disciplinary treatment. Artif. Intell. Med. 26(1–2), 87–107 (2005)
  21. Strauss, A., Fagerhaugh, B., Suczek, B., Weiner, C.: The Social Organization of Medical Work. University of Chicago Press, Chicago (1985)
  22. Fei, H., Meskens, N.: Exploring the analogies and differences between the industrial logistic system and the patient support system in the operating theatre. In: ORAHS’2007, Saint-Etienne, France (2007)
  23. Xu R., WunschII D., Survey of Clustering Algorithms, 10.1109/tnn.2005.845141
  24. Reynolds A. P., Richards G., de la Iglesia B., Rayward-Smith V. J., Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms, 10.1007/s10852-005-9022-1
  25. Elghazel Haytham, Kheddouci Hamamache, Deslandres Véronique, Dussauchoy Alain, A Graph b-coloring Framework for Data Clustering, 10.1007/s10852-008-9093-x
  26. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)
  27. Tan, P.N., Steinbach, M., Kumar, V.: Cluster analysis: basic concepts and algorithms. In: Introduction to Data Mining, pp. 487–568. Addison-Wesley (2005)
  28. Nguyen Quynh, Rayward-Smith V. J., CLAM: Clustering Large Applications Using Metaheuristics, 10.1007/s10852-010-9141-1
  29. Boley Daniel, 10.1023/a:1009740529316
  30. Finding Groups in Data, ISBN:9780470316801, 10.1002/9780470316801
  31. Liao, J., Zhang, B.: A robust clustering algorithm for video shots using Haar wavelet transformation. In: Proceeding of SIGMOD2007, Ph.D. Workshop on Innovation Database Research 2007 (IDAR2007). Beijing, China (2007)
  32. Strickert, M., Seiffert, U.: Correlation-based data representation. In: Biehl, M., et al. (eds.) Similarity-Based Clustering and its Application to Medicine and Biology. Dagstuhl Seminar Proceedings 07131 Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI). Schloss Dagstuhl, Germany (2007)
  33. Brudno M., Malde S., Poliakov A., Do C. B., Couronne O., Dubchak I., Batzoglou S., Glocal alignment: finding rearrangements during alignment, 10.1093/bioinformatics/btg1005
  34. Smith T.F., Waterman M.S., Identification of common molecular subsequences, 10.1016/0022-2836(81)90087-5
  35. Schwartz, R.M., Dayhoff, M.O.: Matrices for detecting distant relationships. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequences and Structure, vol. 5, suppl. (3), pp. 353–358. National Biomedical Research Foundation, Washington, D.C. (1979)
  36. Henikoff S., Henikoff J. G., Amino acid substitution matrices from protein blocks., 10.1073/pnas.89.22.10915