User menu

Consistent treatment of charged systems within periodic boundary conditions: The projectoraugmented-wave and pseudopotential methods revisited

Bibliographic reference Bruneval, Fabien ; Crocombette, Jean-Paul ; Gonze, Xavier ; Dorado, Boris ; Torrent, Marc ; et. al. Consistent treatment of charged systems within periodic boundary conditions: The projectoraugmented-wave and pseudopotential methods revisited. In: Physical review. B, Condensed matter and materials physics, Vol. 89, no.4, p. 045116 1-13 (2014)
Permanent URL
  1. Martin Richard M., Electronic Structure : Basic Theory and Practical Methods, ISBN:9780511805769, 10.1017/cbo9780511805769
  2. M. P. Allen, Computer Simulation of Liquids (1987)
  3. Coldwell‐Horsfall Rosemary A., Maradudin Alexei A., Zero‐Point Energy of an Electron Lattice, 10.1063/1.1703670
  4. de Leeuw S. W., Perram J. W., Smith E. R., Simulation of Electrostatic Systems in Periodic Boundary Conditions. I. Lattice Sums and Dielectric Constants, 10.1098/rspa.1980.0135
  5. Dweydari A. W., Mee C. H. B., Work function measurements on (100) and (110) surfaces of silver, 10.1002/pssa.2210270126
  6. Ewald P. P., Die Berechnung optischer und elektrostatischer Gitterpotentiale, 10.1002/andp.19213690304
  7. Payne M. C., Teter M. P., Allan D. C., Arias T. A., Joannopoulos J. D., Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients, 10.1103/revmodphys.64.1045
  8. Ihm J, Zunger A, Cohen M L, Momentum-space formalism for the total energy of solids, 10.1088/0022-3719/12/21/009
  9. Blöchl P. E., Projector augmented-wave method, 10.1103/physrevb.50.17953
  10. Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, 10.1103/physrevb.59.1758
  11. Lany Stephan, Zunger Alex, Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs, 10.1103/physrevb.78.235104
  12. Freysoldt Christoph, Neugebauer Jörg, Van de Walle Chris G., FullyAb InitioFinite-Size Corrections for Charged-Defect Supercell Calculations, 10.1103/physrevlett.102.016402
  13. Taylor Samuel E., Bruneval Fabien, Understanding and correcting the spurious interactions in charged supercells, 10.1103/physrevb.84.075155
  14. Komsa Hannu-Pekka, Rantala Tapio T., Pasquarello Alfredo, Finite-size supercell correction schemes for charged defect calculations, 10.1103/physrevb.86.045112
  15. Fraser Louisa M., Foulkes W. M. C., Rajagopal G., Needs R. J., Kenny S. D., Williamson A. J., Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions, 10.1103/physrevb.53.1814
  16. Leslie M, Gillan N J, The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method, 10.1088/0022-3719/18/5/005
  17. Makov G., Payne M. C., Periodic boundary conditions inab initiocalculations, 10.1103/physrevb.51.4014
  18. Torrent Marc, Jollet François, Bottin François, Zérah Gilles, Gonze Xavier, Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure, 10.1016/j.commatsci.2007.07.020
  19. Torrent Marc, Holzwarth N.A.W., Jollet François, Harris David, Lepley Nicholas, Xu Xiao, Electronic structure packages: Two implementations of the projector augmented wave (PAW) formalism, 10.1016/j.cpc.2010.07.036
  20. Gonze Xavier, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm, 10.1103/physrevb.55.10337
  21. Vanderbilt David, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, 10.1103/physrevb.41.7892
  22. Holzwarth N.A.W., Tackett A.R., Matthews G.E., A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions, 10.1016/s0010-4655(00)00244-7
  23. R. G. Parr, Density-Functional Theory of Atoms and Molecules (1989)
  24. Baldereschi Alfonso, Baroni Stefano, Resta Raffaele, Band Offsets in Lattice-Matched Heterojunctions: A Model and First-Principles Calculations for GaAs/AlAs, 10.1103/physrevlett.61.734
  25. Komsa H-P, Arola E, Larkins E, Rantala T T, Band offset determination of the GaAs/GaAsN interface using the density functional theory method, 10.1088/0953-8984/20/31/315004
  26. Gonze X., Amadon B., Anglade P.-M., Beuken J.-M., Bottin F., Boulanger P., Bruneval F., Caliste D., Caracas R., Côté M., Deutsch T., Genovese L., Ghosez Ph., Giantomassi M., Goedecker S., Hamann D.R., Hermet P., Jollet F., Jomard G., Leroux S., Mancini M., Mazevet S., Oliveira M.J.T., Onida G., Pouillon Y., Rangel T., Rignanese G.-M., Sangalli D., Shaltaf R., Torrent M., Verstraete M.J., Zerah G., Zwanziger J.W., ABINIT: First-principles approach to material and nanosystem properties, 10.1016/j.cpc.2009.07.007
  27. Zhang S., Northrup John, Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion, 10.1103/physrevlett.67.2339
  28. Bockstedte Michel, Mattausch Alexander, Pankratov Oleg, Ab initiostudy of the migration of intrinsic defects in3C−SiC, 10.1103/physrevb.68.205201
  29. Roma Guido, Bruneval Fabien, Ting Li Ao, Bedoya Martínez Olga Natalia, Crocombette Jean Paul, Formation and Migration Energy of Native Defects in Silicon Carbide from First Principles: An Overview, 10.4028/
  30. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
  31. Kresse G., Furthmüller J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, 10.1103/physrevb.54.11169
  32. Giannozzi Paolo, Baroni Stefano, Bonini Nicola, Calandra Matteo, Car Roberto, Cavazzoni Carlo, Ceresoli Davide, Chiarotti Guido L, Cococcioni Matteo, Dabo Ismaila, Dal Corso Andrea, de Gironcoli Stefano, Fabris Stefano, Fratesi Guido, Gebauer Ralph, Gerstmann Uwe, Gougoussis Christos, Kokalj Anton, Lazzeri Michele, Martin-Samos Layla, Marzari Nicola, Mauri Francesco, Mazzarello Riccardo, Paolini Stefano, Pasquarello Alfredo, Paulatto Lorenzo, Sbraccia Carlo, Scandolo Sandro, Sclauzero Gabriele, Seitsonen Ari P, Smogunov Alexander, Umari Paolo, Wentzcovitch Renata M, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, 10.1088/0953-8984/21/39/395502
  33. Troullier N., Martins José Luriaas, Efficient pseudopotentials for plane-wave calculations, 10.1103/physrevb.43.1993