Botello Mendez, Andrés Rafael
[UCL]
Lherbier, Aurélien
[UCL]
Charlier, Jean-Christophe
[UCL]
The outstanding transport properties of graphene drastically depend on the details of its atomic structure. Thus, modifying the carbon hexagonal network at the atomic level in the form of point defects (chemical dopants, structural modifications) or extended defects (grain boundaries, extended lines of defects) is of paramount importance for the complete understanding of experimental transport measurements on “real” graphene samples. Furthermore, it is crucial to deeply scrutinize the effect of a specific defect on the electronic structure of graphene, because controlled defect introduction may be used to tune the transport properties of graphene in a desired direction for specific applications. In this review, the landscape of defects and their importance in both the electronic structure and the transport properties of graphene are presented using ab initio and tight-binding simulations.
Bibliographic reference |
Botello Mendez, Andrés Rafael ; Lherbier, Aurélien ; Charlier, Jean-Christophe. Modeling electronic properties and quantum transport in doped and defective graphene. In: Solid State Communications, Vol. 175-176, p. 90-100 (2013) |
Permanent URL |
http://hdl.handle.net/2078.1/137926 |