User menu

Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock.

Bibliographic reference Taccone, Fabio Silvio ; Castanares Zapatero, Diego ; Peres-Bota, Daliana ; Vincent, Jean-Louis ; Berre', Jacques ; et. al. Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock.. In: Neurocritical care, Vol. 12, no. 1, p. 35-42 (2010)
Permanent URL
  1. Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–53.
  2. Young GB, Bolton CF, Austin TW, Archibald YM, Gonder J, Wells GA. The encephalopathy associated with septic illness. Clin Invest Med. 1990;13:297–304.
  3. Eggers V, Schilling A, Kox WJ, Spies C. Septic encephalopathy. Diagnosis und therapy. Anaesthesist. 2003;52:294–303.
  4. Zauner C, Gendo A, Kramer L, et al. Impaired subcortical and cortical sensory evoked potential pathways in septic patients. Crit Care Med. 2002;30:1136–9.
  5. Young GB, Bolton CF, Archibald YM, Austin TW, Wells GA. The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol. 1992;9:145–52.
  6. Wratten ML. Therapeutic approaches to reduce systemic inflammation in septic-associated neurologic complications. Eur J Anaesthesiol Suppl. 2008;42:1–7.
  7. Barichello T, Martins MR, Reinke A, et al. Cognitive impairment in sepsis survivors from cecal ligation and perforation. Crit Care Med. 2005;33:221–3.
  8. Ebersoldt M, Sharshar T, Annane D. Sepsis-associated delirium. Intensive Care Med. 2007;33:941–50.
  9. Goris RJ. Mediators of multiple organ failure. Intensive Care Med. 1990;16(Suppl 3):S192–6.
  10. Davies DC. Blood–brain barrier breakdown in septic encephalopathy and brain tumours. J Anat. 2002;200:639–46.
  11. Papadopoulos MC, Lamb FJ, Moss RF, Davies DC, Tighe D, Bennett ED. Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci (Lond). 1999;96:461–6.
  12. Freund HR, Muggia-Sullam M, Peiser J, Melamed E. Brain neurotransmitter profile is deranged during sepsis and septic encephalopathy in the rat. J Surg Res. 1985;38:267–71.
  13. Sharshar T, Gray F, Lorin DLG, et al. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet. 2003;362:1799–805.
  14. Wijdicks E. F. M., Stevens M., The Role of Hypotension in Septic Encephalopathy Following Surgical Procedures, 10.1001/archneur.1992.00530300093015
  15. Sharshar T, Annane D, de la Grandmaison GL, Brouland JP, Hopkinson NS, Francoise G. The neuropathology of septic shock. Brain Pathol. 2004;14:21–33.
  16. Strandgaard S., Paulson O. B., Cerebral autoregulation, 10.1161/01.str.15.3.413
  17. Pfister D, Siegemund M, Dell-Kuster S, et al. Cerebral perfusion in sepsis-associated delirium. Crit Care. 2008;12:R63.
  18. Matta B. F., Stow P. J., Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies, 10.1093/bja/76.6.790
  19. Ainslie PN, Celi L, McGrattan K, Peebles K, Ogoh S. Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2. Brain Res. 2008;1230:115–24.
  20. Xie A, Skatrud JB, Morgan B, et al. Influence of cerebrovascular function on the hypercapnic ventilatory response in healthy humans. J Physiol. 2006;577:319–29.
  21. Harper AM, Glass HI. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J Neurol Neurosurg Psychiatry. 1965;28:449–52.
  22. Thees C, Kaiser M, Scholz M, et al. Cerebral haemodynamics, carbon dioxide reactivity during sepsis syndrome. Crit Care. 2007;11:R123.
  23. Van Lieshout Johannes J., Wieling Wouter, Karemaker John M., Secher Niels H., Syncope, cerebral perfusion, and oxygenation, 10.1152/japplphysiol.00260.2002
  24. Aaslid R., Lindegaard K. F., Sorteberg W., Nornes H., Cerebral autoregulation dynamics in humans, 10.1161/01.str.20.1.45
  25. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–6.
  26. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2:81–4.
  27. Bernard G R, Artigas A, Brigham K L, Carlet J, Falke K, Hudson L, Lamy M, Legall J R, Morris A, Spragg R, The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination., 10.1164/ajrccm.149.3.7509706
  28. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.
  29. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.
  30. Detriche O., Berre J., Massaut J., Vincent J. L., The Brussels sedation scale: use of a simple clinical sedation scale can avoid excessive sedation in patients undergoing mechanical ventilation in the intensive care unit, 10.1093/bja/83.5.698
  31. Bouma GJ, Muizelaar JP. Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma. 1992;9(Suppl 1):S333–48.
  32. Forster A., Juge O., Morel D., Effects of Midazolam on Cerebral Hemodynamics and Cerebral Vasomotor Responsiveness to Carbon Dioxide, 10.1038/jcbfm.1983.33
  33. de Nadal M, Munar F, Poca MA, Sahuquillo J, Garnacho A, Rossello J. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe head injury: absence of correlation to cerebral autoregulation. Anesthesiology. 2000;92:11–9.
  34. Moppett IK, Sherman RW, Wild MJ, Latter JA, Mahajan RP. Effects of norepinephrine and glyceryl trinitrate on cerebral haemodynamics: transcranial Doppler study in healthy volunteers. Br J Anaesth. 2008;100:240–4.
  35. Eidelman LA, Putterman D, Putterman C, Sprung CL. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA. 1996;275:470–3.
  36. Martin C M, Sibbald W J, Modulation of hemodynamics and organ blood flow by nitric oxide synthase inhibition is not altered in normotensive, septic rats., 10.1164/ajrccm.150.6.7524982
  37. Raper RF, Sibbald WJ, Hobson J, Rutledge FS. Effect of PGE1 on altered distribution of regional blood flows in hyperdynamic sepsis. Chest. 1991;100:1703–11.
  38. Meyer J, Hinder F, Stothert J Jr, et al. Increased organ blood flow in chronic endotoxemia is reversed by nitric oxide synthase inhibition. J Appl Physiol. 1994;76:2785–93.
  39. Ekstrom-Jodal B, Haggendal E, Larsson LE. Cerebral blood flow and oxygen uptake in endotoxic shock. An experimental study in dogs. Acta Anaesthesiol Scand. 1982;26:163–70.
  40. Bowton DL, Bertels NH, Prough DS, Stump DA. Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med. 1989;17:399–403.
  41. Maekawa T, Fujii Y, Sadamitsu D, et al. Cerebral circulation and metabolism in patients with septic encephalopathy. Am J Emerg Med. 1991;9:139–43.
  42. Bishop C. C., Powell S., Rutt D., Browse N. L., Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study, 10.1161/01.str.17.5.913
  43. Poulin M. J., Robbins P. A., Indexes of Flow and Cross-sectional Area of the Middle Cerebral Artery Using Doppler Ultrasound During Hypoxia and Hypercapnia in Humans, 10.1161/01.str.27.12.2244
  44. Parker JL, Emerson TE Jr. Cerebral hemodynamics, vascular reactivity, and metabolism during canine endotoxin shock. Circ Shock. 1977;4:41–53.
  45. Hinkelbein J, Schroeck H, Peterka A, Schubert C, Kuschinsky W, Kalenka A. Local cerebral blood flow is preserved in sepsis. Curr Neurovasc Res. 2007;4:39–47.
  46. Moller K, Strauss GI, Qvist J, et al. Cerebral blood flow and oxidative metabolism during human endotoxemia. J Cereb Blood Flow Metab. 2002;22:1262–70.
  47. Ackerman R. H., Zilkha E., Bull J. W.D., Du Boulay G. H., Marshall J., Ross Russell R. W., Symon L., The relationship of the CO2 reactivity of cerebral vessels to blood pressure and mean resting blood flow, 10.1212/wnl.23.1.21
  48. Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Rother J. Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med. 2001;27:1231–4.
  49. Bowie RA, O’Connor PJ, Mahajan RP. Cerebrovascular reactivity to carbon dioxide in sepsis syndrome. Anaesthesia. 2003;58:261–5.
  50. Pickard JD, Matheson M, Patterson J, Wyper D. Prediction of late ischemic complications after cerebral aneurysm surgery by the intraoperative measurement of cerebral blood flow. J Neurosurg. 1980;53:305–8.
  51. Czosnyka M., Smielewski P., Kirkpatrick P., Menon D. K., Pickard J. D., Monitoring of Cerebral Autoregulation in Head-Injured Patients, 10.1161/01.str.27.10.1829
  52. Booke M, Westphal M, Hinder F, Traber LD, Traber DL. Cerebral blood flow is not altered in sheep with Pseudomonas aeruginosa sepsis treated with norepinephrine or nitric oxide synthase inhibition. Anesth Analg. 2003;96:1122–8, table.
  53. Pedersen M, Brandt CT, Knudsen GM, et al. The effect of S. pneumoniae bacteremia on cerebral blood flow autoregulation in rats. J Cereb Blood Flow Metab. 2008;28:126–34.
  54. Smith SM, Padayachee S, Modaresi KB, Smithies MN, Bihari DJ. Cerebral blood flow is proportional to cardiac index in patients with septic shock. J Crit Care. 1998;13:104–9.
  55. McCulloch TJ, Visco E, Lam AM. Graded hypercapnia and cerebral autoregulation during sevoflurane or propofol anesthesia. Anesthesiology. 2000;93:1205–9.
  56. Vavilala MS, Lee LA, Boddu K, et al. Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med. 2004;5:257–63.
  57. Strauss GI. The effect of hyperventilation upon cerebral blood flow and metabolism in patients with fulminant hepatic failure. Dan Med Bull. 2007;54:99–111.
  58. Szabo C. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz. 1995;3:2–32.
  59. Avontuur JA, Bruining HA, Ince C. Nitric oxide causes dysfunction of coronary autoregulation in endotoxemic rats. Cardiovasc Res. 1997;35:368–76.
  60. Avontuur JA, Tutein Nolthenius RP, van Bodegom JW, Bruining HA. Prolonged inhibition of nitric oxide synthesis in severe septic shock: a clinical study. Crit Care Med. 1998;26:660–7.
  61. Lee WY, Mokhlesi B. Diagnosis and management of obesity hypoventilation syndrome in the ICU. Crit Care Clin. 2008;24:533–49. vii.
  62. Pieretti Paola, Alifano Marco, Roche Nicolas, Vincenzi Matteo, Forti Parri Sergio N., Zackova Monica, Boaron Maurizio, Zanello Marco, Predictors of an Appropriate Admission to an ICU after a Major Pulmonary Resection, 10.1159/000088096
  63. Chakrabarti B., Angus R. M., Ventilatory failure on acute take, 10.7861/clinmedicine.5-6-630
  64. Matta BF, Mayberg TS, Lam AM. Direct cerebrovasodilatory effects of halothane, isoflurane, and desflurane during propofol-induced isoelectric electroencephalogram in humans. Anesthesiology. 1995;83:980–5.
  65. Matta BF, Lam AM, Strebel S, Mayberg TS. Cerebral pressure autoregulation and carbon dioxide reactivity during propofol-induced EEG suppression. Br J Anaesth. 1995;74:159–63.
  66. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234:H371–83.
  67. Baumbach GL, Heistad DD. Regional, segmental, and temporal heterogeneity of cerebral vascular autoregulation. Ann Biomed Eng. 1985;13:303–10.
  68. Peebles K, Celi L, McGrattan K, Murrell C, Thomas K, Ainslie PN. Human cerebrovascular and ventilatory CO2 reactivity to end-tidal, arterial and internal jugular vein PCO2. J Physiol. 2007;584:347–57.
  69. Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.