User menu

A new diagrammatic representation for correlation functions in the in-in formalism

  1. Spergel D. N., Bean R., Dore O., Nolta M. R., Bennett C. L., Dunkley J., Hinshaw G., Jarosik N., Komatsu E., Page L., Peiris H. V., Verde L., Halpern M., Hill R. S., Kogut A., Limon M., Meyer S. S., Odegard N., Tucker G. S., Weiland J. L., Wollack E., Wright E. L., Three‐YearWilkinson Microwave Anisotropy Probe(WMAP) Observations: Implications for Cosmology, 10.1086/513700
  2. Acquaviva Viviana, Bartolo Nicola, Matarrese Sabino, Riotto Antonio, Gauge-invariant second-order perturbations and non-Gaussianity from inflation, 10.1016/s0550-3213(03)00550-9
  3. Maldacena Juan, Non-gaussian features of primordial fluctuations in single field inflationary models, 10.1088/1126-6708/2003/05/013
  4. Bartolo N., Komatsu E., Matarrese S., Riotto A., Non-Gaussianity from inflation: theory and observations, 10.1016/j.physrep.2004.08.022
  5. S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [ hep-th/0506236 ] [ INSPIRE ].
  6. S. Weinberg, Quantum contributions to cosmological correlations. II. Can these corrections become large?, Phys. Rev. D 74 (2006) 023508 [ hep-th/0605244 ] [ INSPIRE ].
  7. Sloth Martin S., On the one loop corrections to inflation and the CMB anisotropies, 10.1016/j.nuclphysb.2006.04.029
  8. Schwinger Julian, Brownian Motion of a Quantum Oscillator, 10.1063/1.1703727
  9. Bakshi Pradip M., Mahanthappa Kalyana T., Expectation Value Formalism in Quantum Field Theory. I, 10.1063/1.1703883
  10. Bakshi Pradip M., Mahanthappa Kalyana T., Expectation Value Formalism in Quantum Field Theory. II, 10.1063/1.1703879
  11. L. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [ INSPIRE ].
  12. Chou Kuang-chao, Su Zhao-bin, Hao Bai-lin, Yu Lu, Equilibrium and nonequilibrium formalisms made unified, 10.1016/0370-1573(85)90136-x
  13. R. Jordan, Effective Field Equations for Expectation Values, Phys. Rev. D 33 (1986) 444 [ INSPIRE ].
  14. E. Calzetta and B. Hu, Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems, Phys. Rev. D 35 (1987) 495 [ INSPIRE ].
  15. E. Calzetta and B. Hu, Correlations, decoherence, dissipation and noise in quantum field theory, in Heat Kernel Techniques and Quantum Gravity, Vol. 4 of Discourses in Mathematics and Its Applications, S.A. Fulling ed., Texas A&M University Press, College Station, TX, U.S.A. (1995) [ hep-th/9501040 ] [ INSPIRE ].
  16. Brunier T, Onemli V K, Woodard R P, Two-loop scalar self-mass during inflation, 10.1088/0264-9381/22/1/005
  17. Tsamis N.C, Woodard R.P, The Quantum Gravitational Back-Reaction on Inflation, 10.1006/aphy.1997.5613
Bibliographic reference Musso, Marcello. A new diagrammatic representation for correlation functions in the in-in formalism. In: Journal of High Energy Physics, Vol. 13, no.11, p. 184 (2013)
Permanent URL http://hdl.handle.net/2078.1/137798