User menu

TEM investigation of the formation mechanism of deformation twins in Fe-Mn-Si-Al TWIP steels

Bibliographic reference Idrissi, Hosni ; Renard, Krystel ; Schryvers, Dominique ; Jacques, Pascal. TEM investigation of the formation mechanism of deformation twins in Fe-Mn-Si-Al TWIP steels. In: Philosophical Magazine, Vol. 93, no. 35, p. 4378-4391 (2013)
Permanent URL http://hdl.handle.net/2078.1/137245
  1. Scott C., Allain S., Faral M., Guelton N., The development of a new Fe-Mn-C austenitic steel for automotive applications, 10.1051/metal:2006142
  2. Bouaziz O, Guelton N, Modelling of TWIP effect on work-hardening, 10.1016/s0921-5093(00)02019-0
  3. Allain S., Steel Res., 73, 299 (2002)
  4. Bouaziz O., Allain S., Scott C., Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, 10.1016/j.scriptamat.2007.10.050
  5. Idrissi H., Renard K., Ryelandt L., Schryvers D., Jacques P.J., On the mechanism of twin formation in Fe–Mn–C TWIP steels, 10.1016/j.actamat.2009.12.032
  6. Hadfield R.A., Science, 12, 284 (1888)
  7. Dastur Y. N., Leslie W. C., Mechanism of work hardening in Hadfield manganese steel, 10.1007/bf02648339
  8. Hutchinson Bevis, Ridley Norman, On dislocation accumulation and work hardening in Hadfield steel, 10.1016/j.scriptamat.2006.05.002
  9. Grässel O, Krüger L, Frommeyer G, Meyer L.W, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application, 10.1016/s0749-6419(00)00015-2
  10. Grässel O., Frommeyer G., Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels, 10.1179/026708398790300891
  11. Frommeyer G., Rev. Metall. Cah. Inf. Tech., 95, 1299 (1998)
  12. Brux U., Steel Res., 73, 294 (2002)
  13. Vercammen S., Blanpain B., De Cooman B.C., Wollants P., Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning, 10.1016/j.actamat.2003.12.040
  14. Renard Krystel, Idrissi Hosni, Schryvers Dominique, Jacques Pascal J., Multiscale Characterization of the Work Hardening Mechanisms in Fe-Mn Based TWIP Steels, 10.1002/srin.201100312
  15. Renard K., Idrissi H., Schryvers D., Jacques P.J., On the stress state dependence of the twinning rate and work hardening in twinning-induced plasticity steels, 10.1016/j.scriptamat.2012.01.063
  16. Idrissi H., Renard K., Schryvers D., Jacques P.J., On the relationship between the twin internal structure and the work-hardening rate of TWIP steels, 10.1016/j.scriptamat.2010.07.016
  17. Venables J. A., On dislocation pole models for twinning, 10.1080/14786437408207269
  18. Cohen J.B., Weertman J., A dislocation model for twinning in f.c.c. metals, 10.1016/0001-6160(63)90074-9
  19. Mori Takeshi, Fujita Hiroshi, Dislocation reactions during deformation twinning in Cu-11at.% Al single crystals, 10.1016/0001-6160(80)90154-6
  20. Mahajan S., Chin G.Y., Formation of deformation twins in f.c.c. crystals, 10.1016/0001-6160(73)90085-0
  21. Rémy L., Thesis (1975)
  22. Azzaz Mohamed, Michel Jean-Pierre, George Amand, Plastic deformation, extended stacking faults and deformation twinning in single crystalline indium phosphide 2. S doped InP, 10.1080/01418619608242986
  23. Williams David B., Carter C. Barry, Transmission Electron Microscopy, ISBN:9780306453243, 10.1007/978-1-4757-2519-3
  24. Marcinkowski M. J., Miller D. S., The effect of ordering on the strength and dislocation arrangements in the Ni3Mn superlattice, 10.1080/14786436108243345
  25. Copley S.M., Kear B.H., The dependence of the width of a dissociated dislocation on dislocation velocity, 10.1016/0001-6160(68)90118-1