User menu

Partitioned and implicit-explicit general linear methods for ordinary differential equations.

Bibliographic reference Zhang, Hong ; Sandu, Adrian ; Blaise, Sébastien. Partitioned and implicit-explicit general linear methods for ordinary differential equations.. In: Journal of Scientific Computing, Vol. 61, no. 1, p. 119-144 (2014)
Permanent URL
  1. Ascher Uri M., Ruuth Steven J., Spiteri Raymond J., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, 10.1016/s0168-9274(97)00056-1
  2. Ascher Uri M., Ruuth Steven J., Wetton Brian T. R., Implicit-Explicit Methods for Time-Dependent Partial Differential Equations, 10.1137/0732037
  3. Blaise Sébastien, St-Cyr Amik, A Dynamichp-Adaptive Discontinuous Galerkin Method for Shallow-Water Flows on the Sphere with Application to a Global Tsunami Simulation, 10.1175/mwr-d-11-00038.1
  4. Boscarino Sebastiano, Russo Giovanni, On a Class of Uniformly Accurate IMEX Runge–Kutta Schemes and Applications to Hyperbolic Systems with Relaxation, 10.1137/080713562
  5. Butcher J.C., Diagonally-implicit multi-stage integration methods, 10.1016/0168-9274(93)90059-z
  6. Butcher J. C., Numerical Methods for Ordinary Differential Equations, ISBN:9780470753767, 10.1002/9780470753767
  7. Butcher J.C., Jackiewicz Z., Construction of diagonally implicit general linear methods of type 1 and 2 for ordinary differential equations, 10.1016/s0168-9274(96)00043-8
  8. Butcher J. C., Wright W. M., The Construction of Practical General Linear Methods, 10.1023/b:bitn.0000009952.71388.23
  9. Butcher J. C., Jackiewicz Z., Diagonally implicit general linear methods for ordinary differential equations, 10.1007/bf01990528
  10. Butcher J. C., Jackiewicz Z., Implementation of Diagonally Implicit Multistage Integration Methods for Ordinary Differential Equations, 10.1137/s0036142995282509
  11. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolation-based implicit-explicit general linear methods. Numerical Algorithms, pp. 1–23 (2013)
  12. Comblen Richard, Blaise Sébastien, Legat Vincent, Remacle Jean-François, Deleersnijder Eric, Lambrechts Jonathan, A discontinuous finite element baroclinic marine model on unstructured prismatic meshes : Part II: implicit/explicit time discretization, 10.1007/s10236-010-0357-4
  13. D’Ambrosio, R., Butcher, J.: Multivalue numerical methods for partitioned differential problems: from second order ODEs to separable Hamiltonians. Presentation given at Auckland Numerical Ordinary Differential Equations ANODE 2013 (celebration of the 80th birthday of John Butcher) (2013)
  14. Frank J., Hundsdorfer W., Verwer J.G., On the stability of implicit-explicit linear multistep methods, 10.1016/s0168-9274(97)00059-7
  15. Geuzaine Christophe, Remacle Jean-François, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, 10.1002/nme.2579
  16. Giraldo F. X., Restelli M., Läuter M., Semi-Implicit Formulations of the Navier–Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling, 10.1137/090775889
  17. Giraldo F.X., Restelli M., A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases, 10.1016/
  18. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, Berlin (1993)
  19. Hundsdorfer Willem, Ruuth Steven J., IMEX extensions of linear multistep methods with general monotonicity and boundedness properties, 10.1016/
  20. Jackiewicz, Z.: General Linear Methods for ODE. Wiley, New York (2009)
  21. Kameni A., Lambrechts J., Remacle J.-F., Mezani S., Bouillault F., Geuzaine C., Discontinuous Galerkin Method for Computing Induced Fields in Superconducting Materials, 10.1109/tmag.2011.2173664
  22. Kärnä Tuomas, Legat Vincent, Deleersnijder Eric, A baroclinic discontinuous Galerkin finite element model for coastal flows, 10.1016/j.ocemod.2012.09.009
  23. Kennedy Christopher A., Carpenter Mark H., Additive Runge–Kutta schemes for convection–diffusion–reaction equations, 10.1016/s0168-9274(02)00138-1
  24. Nair Ramachandran D., Thomas Stephen J., Loft Richard D., A Discontinuous Galerkin Global Shallow Water Model, 10.1175/mwr2903.1
  25. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 3, 269–287 (2000)
  26. Prothero A., Robinson A., On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, 10.1090/s0025-5718-1974-0331793-2
  27. Seny B., Lambrechts J., Comblen R., Legat V., Remacle J.-F., Multirate time stepping for accelerating explicit discontinuous Galerkin computations with application to geophysical flows : MULTIRATE FOR ACCELERATING DISCONTINUOUS GALERKIN COMPUTATIONS, 10.1002/fld.3646
  28. Seny Bruno, Lambrechts Jonathan, Toulorge Thomas, Legat Vincent, Remacle Jean-François, An efficient parallel implementation of explicit multirate Runge–Kutta schemes for discontinuous Galerkin computations, 10.1016/
  29. Skamarock William C., Klemp Joseph B., Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique, 10.1175/1520-0493(1994)122<2623:eaaotk>;2
  30. St-Cyr Amik, Neckels David, A Fully Implicit Jacobian-Free High-Order Discontinuous Galerkin Mesoscale Flow Solver, Lecture Notes in Computer Science (2009) ISBN:9783642019722 p.243-252, 10.1007/978-3-642-01973-9_28
  31. Verwer J.G., Sommeijer B.P., Hundsdorfer W., RKC time-stepping for advection–diffusion–reaction problems, 10.1016/
  32. Wright, W.M.: General linear methods with inherent Runge–Kutta stability. Ph.D. thesis, The University of Auckland (2002)
  33. Zhang, H., Sandu, A.: Implicit–explicit DIMSIM time stepping algorithms. arXiv:1302.2689
  34. Zhang, H., Sandu, A.: A second-order diagonally-implicit–explicit multi-stage integration method. Procedia CS 9, 1039–1046 (2012)