User menu

The Riemann-Hilbert approach to obtain critical asymptotics for Hamiltonian perturbations of hyperbolic and elliptic systems

Bibliographic reference Claeys, Tom. The Riemann-Hilbert approach to obtain critical asymptotics for Hamiltonian perturbations of hyperbolic and elliptic systems. In: Random Matrices: Theory and Applications, Vol. 1, no. 1130002, p. 1-24 (2012)
Permanent URL
  1. Beals Richard, Deift Percy, Tomei Carlos, Direct and Inverse Scattering on the Line, ISBN:9780821815304, 10.1090/surv/028
  2. de Monvel Anne Boutet, Kostenko Aleksey, Shepelsky Dmitry, Teschl Gerald, Long-time Asymptotics for the Camassa–Holm Equation, 10.1137/090748500
  3. Boutet de Monvel A., C. R. Acad. Sci. Paris, Ser. I, 343
  4. Brézin Edouard, Marinari Enzo, Parisi Giorgio, A non-perturbative ambiguity free solution of a string model, 10.1016/0370-2693(90)91590-8
  5. Claeys T., Grava T., Universality of the Break-up Profile for the KdV Equation in the Small Dispersion Limit Using the Riemann-Hilbert Approach, 10.1007/s00220-008-0680-5
  6. Claeys T, Vanlessen M, The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation, 10.1088/0951-7715/20/5/006
  7. Claeys T., Vanlessen M., Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models, 10.1007/s00220-007-0256-9
  8. Deift P., Kriecherbauer T., McLaughlin K. T-R, Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, 10.1002/(sici)1097-0312(199911)52:11<1335::aid-cpa1>;2-1
  9. Deift P., Trubowitz E., Inverse scattering on the line, 10.1002/cpa.3160320202
  10. Deift P., Int. Math. Res. Notices, 6, 285
  11. Deift P., Venakides S., Zhou X., An extension of the steepest descent method for Riemann-Hilbert problems: The small dispersion limit of the Korteweg-de Vries (KdV) equation, 10.1073/pnas.95.2.450
  12. Deift P., Zhou X., A Steepest Descent Method for Oscillatory Riemann--Hilbert Problems. Asymptotics for the MKdV Equation, 10.2307/2946540
  13. Douglas Michael R., Seiberg Nathan, Shenker Stephen H., Flow and instability in quantum gravity, 10.1016/0370-2693(90)90333-2
  14. Dubrovin Boris, On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour, 10.1007/s00220-006-0021-5
  15. Dubrovin Boris, On universality of critical behaviour in Hamiltonian PDEs, 10.1090/trans2/224/03
  16. Dubrovin B, Hamiltonian PDEs: deformations, integrability, solutions, 10.1088/1751-8113/43/43/434002
  17. Dubrovin B., Grava T., Klein C., On Universality of Critical Behavior in the Focusing Nonlinear Schrödinger Equation, Elliptic Umbilic Catastrophe and the Tritronquée Solution to the Painlevé-I Equation, 10.1007/s00332-008-9025-y
  18. Duits M, Kuijlaars A B J, Painlevé I asymptotics for orthogonal polynomials with respect to a varying quartic weight, 10.1088/0951-7715/19/10/001
  19. Fokas Athanassios, Its Alexander, Kapaev Andrei, Novokshenov Victor, Painlevé Transcendents, ISBN:9780821836514, 10.1090/surv/128
  20. Fokas A. S., Its A. R., Kitaev A. V., The isomonodromy approach to matric models in 2D quantum gravity, 10.1007/bf02096594
  21. Fokas A S, Mugan U, Zhou Xin, On the solvability of Painleve I, III and V, 10.1088/0266-5611/8/5/006
  22. Fokas A. S., Zhou Xin, On the solvability of Painlevé II and IV, 10.1007/bf02099185
  23. Gardner Clifford S., Greene John M., Kruskal Martin D., Miura Robert M., Korteweg-devries equation and generalizations. VI. methods for exact solution, 10.1002/cpa.3160270108
  24. Garifullin R., Suleimanov B., Tarkhanov N., Phase shift in the Whitham zone for the Gurevich–Pitaevskii special solution of the Korteweg–de Vries equation, 10.1016/j.physleta.2010.01.057
  25. Grava Tamara, Klein Christian, Numerical solution of the small dispersion limit of Korteweg—de Vries and Whitham equations, 10.1002/cpa.20183
  26. Grava Tamara, Klein Christian, Numerical study of a multiscale expansion of Korteweg-de Vries and Camassa-Holm equation, 10.1090/conm/458/08931
  27. Gurevich A. G., JEPT Lett., 17, 193
  28. Joshi N., Kitaev A. V., On Boutroux's Tritronquee Solutions of the First Painleve Equation, 10.1111/1467-9590.00187
  29. Kapaev A. A., Weakly nonlinear solutions of equationP 1 2, 10.1007/bf02364569
  30. Kapaev A A, Quasi-linear Stokes phenomenon for the Painlevé first equation, 10.1088/0305-4470/37/46/005
  31. Kamvissis Spyridon, McLaughlin Kenneth D.T-R, Miller Peter D., Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrodinger Equation (AM-154) : , ISBN:9781400837182, 10.1515/9781400837182
  32. Kudashev Vadim, Suleimanov Bulat, A soft mechanism for the generation of dissipationless shock waves, 10.1016/0375-9601(96)00570-1
  33. Kudashev V.R., Suleimanov B.I., The effect of small dissipation on the onset of one-dimensional shock waves, 10.1016/s0021-8928(01)00050-8
  34. Lax Peter D., David Levermore C., The small dispersion limit of the Korteweg-de Vries equation. I, 10.1002/cpa.3160360302
  35. Lax Peter D., Levermore C. David, The small dispersion limit of the korteweg-de vries equation. ii, 10.1002/cpa.3160360503
  36. Lax Peter D., David Levermore C., The small dispersion limit of the Korteweg-de Vries equation. III, 10.1002/cpa.3160360606
  37. Moore Gregory, Geometry of the string equations, 10.1007/bf02097368
  38. Ramond Thierry, Semiclassical study of quantum scattering on the line, 10.1007/bf02102437
  39. Shabat A. B., Problems in Mechanics and Mathematical Physics (1976)
  40. Tian Fei Ran, Oscillations of the zero dispersion limit of the korteweg-de vries equation, 10.1002/cpa.3160460802
  41. Tovbis Alexander, Venakides Stephanos, The eigenvalue problem for the focusing nonlinear Schrödinger equation: new solvable cases, 10.1016/s0167-2789(00)00126-3
  42. Tovbis Alexander, Venakides Stephanos, Zhou Xin, On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation : Semiclassical Solutions to NLS, 10.1002/cpa.20024
  43. Venakides Stephanos, The korteweg-de vries equation with small dispersion: Higher order lax-levermore theory, 10.1002/cpa.3160430303
  44. Zhou Xin, L2-Sobolev space bijectivity of the scattering and inverse scattering transforms, 10.1002/(sici)1097-0312(199807)51:7<697::aid-cpa1>;2-1