User menu

Exergy as a tool for measuring process intensification in chemical engineering

Bibliographic reference Luis Alconero, Patricia. Exergy as a tool for measuring process intensification in chemical engineering. In: Journal of Chemical Technology and Biotechnology, Vol. 88, no.11, p. 1951-1958 (2013)
Permanent URL http://hdl.handle.net/2078.1/135908
  1. Seader, Separation Process Principles (2005)
  2. Dincer Ibrahim, Rosen Marc A, Energy, environment and sustainable development, 10.1016/s0306-2619(99)00111-7
  3. Sciubba, Int J Thermodynam, 10, 1 (2007)
  4. Dewulf Jo, Van Langenhove Herman, Muys Bart, Bruers Stijn, Bakshi Bhavik R., Grubb Geoffrey F., Paulus D. M., Sciubba Enrico, Exergy: Its Potential and Limitations in Environmental Science and Technology, 10.1021/es071719a
  5. Bejan Adrian, Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture, 10.1002/er.804
  6. Bejan Adrian, Entropy generation minimization: The new thermodynamics of finite‐size devices and finite‐time processes, 10.1063/1.362674
  7. Stankiewicz, Chem Eng Prog, 96, 22 (2000)
  8. Kotas, The Exergy Method of Thermal Plant Analysis (1985)
  9. Szargut, Exergy Analysis of Thermal, Chemical, and Metallurgical Processes (1988)
  10. Szargut J Valero A Stanek W Valero A Trondheim, Norway 2005 NTNU 1 409 417
  11. De Meester Bram, Dewulf Jo, Janssens Arnold, Van Langenhove Herman, An Improved Calculation of the Exergy of Natural Resources for Exergetic Life Cycle Assessment (ELCA), 10.1021/es060167d
  12. Cornelissen RL 1997
  13. DUNBAR W. R., LIOR N., Sources of Combustion Irreversibility, 10.1080/00102209408907687
  14. Leites I.L., Sama D.A., Lior N., The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes, 10.1016/s0360-5442(02)00107-x
  15. Sorin Mikhail, Rheault Fernand, Thermodynamically guided intensification of separation processes, 10.1016/j.applthermaleng.2006.02.043
  16. Demirel Yaşar, Thermodynamic Analysis of Separation Systems, 10.1081/ss-200041152
  17. Le Goff Pierre, Cachot Thiery, Rivero Ricardo, Exergy analysis of distillation processes, 10.1002/ceat.270190603
  18. RIVERO R, Exergy and exergoeconomic analysis of a crude oil combined distillation unit, 10.1016/j.energy.2004.03.094
  19. Kencse Hajnalka, Mizsey Peter, Methodology for the design and evaluation of distillation systems: Exergy analysis, economic features and GHG emissions, 10.1002/aic.12101
  20. Tarighaleslami Amir Hossein, Omidkhah Mohammad Reza, Ghannadzadeh Ali, Hoseinzadeh Hesas Roozbeh, Thermodynamic evaluation of distillation columns using exergy loss profiles: a case study on the crude oil atmospheric distillation column, 10.1007/s10098-012-0465-6
  21. Zou Xiong, Cui Yue-Hui, Dong Hong-Guang, Wang Jinqu, Grossmann Ignacio E., Optimal design of complex distillation system for multicomponent zeotropic separations, 10.1016/j.ces.2012.02.045
  22. de Koeijer Gelein, Rivero Ricardo, Entropy production and exergy loss in experimental distillation columns, 10.1016/s0009-2509(02)00627-9
  23. Drioli, Fluid/Particle Sep J, 16, 1 (2004a)
  24. Calabro V., Pantano G., Kang M., Molinari R., Drioli E., Experimental study on integrated membrane processes in the treatment of solutions simulating textile effluents. Energy and exergy analysis, 10.1016/0011-9164(90)80046-e
  25. Agrawal Rakesh, Xu Jianguo, Separation devices for gas mixing, 10.1002/aic.690411208
  26. Agrawal Rakesh, Xu Jianguo, Gas separation membrane cascades II. Two-compressor cascades, 10.1016/0376-7388(95)00273-1
  27. Xu Jianguo, Agrawal Rakesh, Gas separation membrane cascades I. One-compressor cascades with minimal exergy losses due to mixing, 10.1016/0376-7388(95)00272-3
  28. Cerci Yunus, Exergy analysis of a reverse osmosis desalination plant in California, 10.1016/s0011-9164(02)00207-2
  29. Mabrouk Abdulnasser A., Nafey A.S., Fath H.E.S., Thermoeconomic analysis of some existing desalination processes, 10.1016/j.desal.2006.02.059
  30. Drioli E., Curcio E., Di Profio G., Macedonio F., Criscuoli A., Integrating Membrane Contactors Technology and Pressure-Driven Membrane Operations for Seawater Desalination, 10.1205/cherd.05171
  31. Van der Bruggen Bart, Lejon Liesbeth, Vandecasteele Carlo, Reuse, Treatment, and Discharge of the Concentrate of Pressure-Driven Membrane Processes, 10.1021/es0201754
  32. Molinari Raffaele, Gagliardi Roberto, Drioli Enrico, Methodology for estimating saving of primary energy with membrane operations in industrial processes, 10.1016/0011-9164(96)00014-8
  33. Criscuoli Alessandra, Drioli Enrico, Energetic and exergetic analysis of an integrated membrane desalination system, 10.1016/s0011-9164(99)00109-5
  34. Mehdizadeh H., Membrane desalination plants from an energy–exergy viewpoint, 10.1016/j.desal.2005.06.037
  35. ALOBAIDANI S, CURCIO E, MACEDONIO F, DIPROFIO G, ALHINAI H, DRIOLI E, Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation, 10.1016/j.memsci.2008.06.006
  36. Macedonio Francesca, Drioli Enrico, An exergetic analysis of a membrane desalination system, 10.1016/j.desal.2010.06.070
  37. Spiegler K.S., El-Sayed Y.M., The energetics of desalination processes, 10.1016/s0011-9164(01)00121-7
  38. KALOGIROU S, Seawater desalination using renewable energy sources, 10.1016/j.pecs.2005.03.001
  39. Drioli Enrico, Romano Maria, Progress and New Perspectives on Integrated Membrane Operations for Sustainable Industrial Growth, 10.1021/ie0006209
  40. Bernardo, Clean Technol Environ Policy, 6/2, 78 (2004)
  41. Baker Richard W., Future Directions of Membrane Gas Separation Technology, 10.1021/ie0108088
  42. GRANOVSKII M, DINCER I, ROSEN M, Application of oxygen ion-conductive membranes for simultaneous electricity and hydrogen generation, 10.1016/j.cej.2006.01.020
  43. Atsonios, Energy Convers Manage, 60, 196 (2012)
  44. IEA 2009
  45. Kuramochi Takeshi, Ramírez Andrea, Turkenburg Wim, Faaij André, Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes, 10.1016/j.pecs.2011.05.001
  46. Aaron Douglas, Tsouris Costas, Separation of CO2from Flue Gas: A Review, 10.1081/ss-200042244
  47. Amrollahi Zeinab, Ertesvåg Ivar S., Bolland Olav, Optimized process configurations of post-combustion CO2 capture for natural-gas-fired power plant—Exergy analysis, 10.1016/j.ijggc.2011.09.004
  48. Rochelle Gary, Chen Eric, Freeman Stephanie, Van Wagener David, Xu Qing, Voice Alexander, Aqueous piperazine as the new standard for CO2 capture technology, 10.1016/j.cej.2011.02.011
  49. Zhang Jiafei, Qiao Yu, Agar David W., Intensification of low temperature thermomorphic biphasic amine solvent regeneration for CO2 capture, 10.1016/j.cherd.2012.03.016
  50. Geuzebroek F.H., Schneiders L.H.J.M., Kraaijveld G.J.C., Feron P.H.M., Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus, 10.1016/j.energy.2004.03.083
  51. Kishimoto Akira, Kansha Yasuki, Fushimi Chihiro, Tsutsumi Atsushi, Exergy Recuperative CO2Gas Separation in Post-Combustion Capture, 10.1021/ie200852b
  52. Kishimoto Akira, Kansha Yasuki, Fushimi Chihiro, Tsutsumi Atsushi, Exergy recuperative CO2 gas separation in pre-combustion capture, 10.1007/s10098-011-0428-3
  53. Luis Patricia, Van Gerven Tom, Van der Bruggen Bart, Recent developments in membrane-based technologies for CO2 capture, 10.1016/j.pecs.2012.01.004
  54. Atsonios K., Panopoulos K.D., Doukelis A., Koumanakos A., Kakaras Em., Exergy analysis of a hydrogen fired combined cycle with natural gas reforming and membrane assisted shift reactors for CO2 capture, 10.1016/j.enconman.2012.02.015
  55. Luis P., Van Aubel D., Van der Bruggen B., Technical viability and exergy analysis of membrane crystallization: Closing the loop of CO2 sequestration, 10.1016/j.ijggc.2012.11.027
  56. Björklöf Thomas, Zevenhoven Ron, Energy efficiency analysis of CO2 mineral sequestration in magnesium silicate rock using electrochemical steps, 10.1016/j.cherd.2012.02.001
  57. Mahmoudkhani Maryam, Keith David W., Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—Thermodynamic analysis, 10.1016/j.ijggc.2009.02.003
  58. Ishida M., Zheng D., Akehata T., Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis, 10.1016/0360-5442(87)90119-8
  59. Petrakopoulou Fontina, Tsatsaronis George, Boyano Alicia, Morosuk Tatiana, Exergoeconomic and exergoenvironmental evaluation of power plants including CO2 capture, 10.1016/j.cherd.2010.08.001
  60. Hinderink A.P., Kerkhof F.P.J.M., Lie A.B.K., De Swaan Arons J., Van Der Kooi H.J., Exergy analysis with a flowsheeting simulator—I. Theory; calculating exergies of material streams, 10.1016/0009-2509(96)00220-5
  61. Hinderink A.P., Kerkhof F.P.J.M., Lie A.B.K., De Swaan Arons J., Van Der Kooi H.J., Exergy analysis with a flowsheeting simulator—II. Application; synthesis gas production from natural gas, 10.1016/0009-2509(96)00221-7
  62. Querol E., Gonzalez-Regueral B., Ramos A., Perez-Benedito J.L., Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®, 10.1016/j.energy.2010.12.013
  63. Abdollahi-Demneh Farzad, Moosavian Mohammad Ali, Omidkhah Mohammad Reza, Bahmanyar Hossein, Calculating exergy in flowsheeting simulators: A HYSYS implementation, 10.1016/j.energy.2011.06.040
  64. Baudet P Baudouin O Dechelotte S Floquet P Ghannadzadeh A Joulia X 2012
  65. Ghannadzadeh Ali, Thery-Hetreux Raphaële, Baudouin Olivier, Baudet Philippe, Floquet Pascal, Joulia Xavier, General methodology for exergy balance in ProSimPlus® process simulator, 10.1016/j.energy.2012.02.017