User menu

On convergence properties of variational constitutive updates for elasto-visco-plasticity

Bibliographic reference Brassart, Laurence ; Stainier, Laurent. On convergence properties of variational constitutive updates for elasto-visco-plasticity. In: GAMM-Mitteilungen, Vol. 35, no.1, p. 26-42 (2012)
Permanent URL
  1. Halphen, J. Mécanique, 14, 39 (1975)
  2. Germain P., Nguyen Q. S., Suquet P., Continuum Thermodynamics, 10.1115/1.3167184
  3. Mialon, EDF Bulletin de la Direction des Etudes et Recherches Série C, 3, 57 (1986)
  4. Comi C., Corigliano A., Maier G., Extremum properties of finite-step solutions in elastoplasticity with nonlinear mixed hardening, 10.1016/0020-7683(91)90094-v
  5. Martin J.B., Kaunda M.A.E., Isted R.D., Internal variable formulations of elastic-plastic dynamic problems, 10.1016/s0734-743x(96)00016-4
  6. Carini Angelo, Colonnetti's minimum principle extension to generally non-linear materials, 10.1016/0020-7683(95)00026-7
  7. Miehe Christian, Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation, 10.1002/nme.515
  8. Ortiz M., Stainier L., The variational formulation of viscoplastic constitutive updates, 10.1016/s0045-7825(98)00219-9
  9. Mosler J., Ortiz M., Variationalh-adaption in finite deformation elasticity and plasticity, 10.1002/nme.2011
  10. Mosler J., Ortiz M., An error-estimate-free and remapping-free variational mesh refinement and coarsening method for dissipative solids at finite strains, 10.1002/nme.2428
  11. Lahellec Noël, Suquet Pierre, On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles, 10.1016/j.jmps.2007.02.003
  12. Lahellec Noël, Suquet Pierre, On the effective behavior of nonlinear inelastic composites: II, 10.1016/j.jmps.2007.02.004
  13. L. Brassart Homogenization of elasto-(visco)plastic composites: history-dependent incremental and variational approaches, PhD thesis, École polytechnique de Louvain, 2011.
  14. Mosler J., Bruhns O.T., Towards variational constitutive updates for non-associative plasticity models at finite strain: Models based on a volumetric-deviatoric split, 10.1016/j.ijsolstr.2008.12.008
  15. Mosler J., Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening, 10.1016/j.cma.2010.03.025
  16. Fancello Eduardo, Ponthot Jean-Philippe, Stainier Laurent, A variational formulation of constitutive models and updates in non-linear finite viscoelasticity, 10.1002/nme.1525
  17. YANG Q, STAINIER L, ORTIZ M, A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids, 10.1016/j.jmps.2005.08.010
  18. M. L. Wilkins Calculation of elasto-plastic flow, in: Methods of computational physics (vol. 3), edited by B. Alder et al. (Academic Press, New York, 1964), pp.211-263.
  19. Stainier L., Consistent incremental approximation of dissipation pseudo-potentials in the variational formulation of thermo-mechanical constitutive updates, 10.1016/j.mechrescom.2011.03.011
  20. J. Lemaître J. L. Chaboche Mechanics of solid materials (Cambridge Univ. Press, 1990).
  21. G. A. Maugin The thermomechanics of plasticity and fracture (Cambridge Univ. Press, 1992).
  22. Stainier L., Ortiz M., Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity, 10.1016/j.ijsolstr.2009.11.012
  23. Chaboche J.L., A review of some plasticity and viscoplasticity constitutive theories, 10.1016/j.ijplas.2008.03.009
  24. J. C. Simo T. J. R. Hughes Computational Inelasticity (Springer, 1998).
  25. I. Doghri Mechanics of deformable solids: linear and nonlinear, analytical and computational aspects (Springer, 2000).