User menu

Subgradient methods for huge-scale optimization problems

Bibliographic reference Nesterov, Yurii. Subgradient methods for huge-scale optimization problems. In: Mathematical Programming, Vol. 146, no. 1-2, p. 275-297 (May 2013)
Permanent URL http://hdl.handle.net/2078.1/135561
  1. Khachiyan, L., Tarasov, S., Erlich, E.: The inscribed ellipsoid method. Sov. Math. Dokl. 37, 226–230 (1988)
  2. Luo, Z.Q., Tseng, P.: On the convergence rate of dual ascent methods for linearly constrained convex minimization. Math. Oper. Res. 18(2), 846–867 (1993)
  3. Nesterov Yu., Smooth minimization of non-smooth functions, 10.1007/s10107-004-0552-5
  4. Nesterov Yurii, Primal-dual subgradient methods for convex problems, 10.1007/s10107-007-0149-x
  5. Nesterov, Yu.: Efficiency of coordinate descent methods on huge-scale optimization problems. CORE iscussion paper 2010/2. Accepted by SIOPT
  6. Nesterov Yurii, Nemirovskii Arkadii, Interior-Point Polynomial Algorithms in Convex Programming, ISBN:9780898713190, 10.1137/1.9781611970791
  7. Gilpin Andrew, Peña Javier, Sandholm Tuomas, First-order algorithm with $${\mathcal{O}({\rm ln}(1{/}\epsilon))}$$ convergence for $${\epsilon}$$ -equilibrium in two-person zero-sum games, 10.1007/s10107-010-0430-2
  8. Polyak, B.: Introduction to Optimization. Optimization Software, Inc., New York (1987)
  9. Richtárik Peter, Takáč Martin, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, 10.1007/s10107-012-0614-z
  10. Shor Naum Zuselevich, Minimization Methods for Non-Differentiable Functions, ISBN:9783642821202, 10.1007/978-3-642-82118-9