User menu

How to avoid unbounded drug accumulation with fractional pharmacokinetics

Bibliographic reference Hennion, Maud ; Hanert, Emmanuel. How to avoid unbounded drug accumulation with fractional pharmacokinetics. In: Journal of Pharmacokinetics and Pharmacodynamics, Vol. 40, no.6, p. 691-700 (December 2013)
Permanent URL http://hdl.handle.net/2078.1/135259
  1. Anderson J., Tomlinson R. W. S., The distribution of calcium-47 in the rat, 10.1113/jphysiol.1966.sp007843
  2. Benson David A., Wheatcraft Stephen W., Meerschaert Mark M., Application of a fractional advection-dispersion equation, 10.1029/2000wr900031
  3. Boyd JP (2001) Chebyshev and Fourier Spectral Methods (2nd edition). Dover Publications
  4. Brockmann D (2009) Human mobility and spatial disease dynamics, vol 10. In: Schuster HG (ed) Reviews of nonlinear dynamics and complexity. Wiley-VCH Weinheim, pp 1–24
  5. Fractals and Fractional Calculus in Continuum Mechanics, ISBN:9783211829134, 10.1007/978-3-7091-2664-6
  6. Cartea Álvaro, del-Castillo-Negrete Diego, Fractional diffusion models of option prices in markets with jumps, 10.1016/j.physa.2006.08.071
  7. Claret Laurent, Iliadis Athanassios, Macheras Panos, 10.1023/a:1012295014352
  8. Das S., Gupta P.K., A mathematical model on fractional Lotka–Volterra equations, 10.1016/j.jtbi.2011.01.034
  9. del-Castillo-Negrete D., Carreras B. A., Lynch V. E., Fractional diffusion in plasma turbulence, 10.1063/1.1767097
  10. del Castillo Negrete D, Carreras BA, Lynch VE (2005) Nondiffusive transport in plasma turbulence: A fractional diffusion approach. Phys Rev Lett 94(065003)
  11. Deng ZQ, de Lima JLMP, de Lima MIP, Singh VP (2006) A fractional dispersion model for overland solute transport. Water Resour Res 42:W03416
  12. Dokoumetzidis Aristides, Macheras Panos, Fractional kinetics in drug absorption and disposition processes, 10.1007/s10928-009-9116-x
  13. Dokoumetzidis Aristides, Macheras Panos, The Changing Face of the Rate Concept in Biopharmaceutical Sciences: From Classical to Fractal and Finally to Fractional, 10.1007/s11095-011-0370-4
  14. Dokoumetzidis Aristides, Magin Richard, Macheras Panos, Fractional kinetics in multi-compartmental systems, 10.1007/s10928-010-9170-4
  15. Fuite J, Marsh R, Tuszynski J (2002) Fractal pharmacokinetics of the drug mibefradil in the liver. Phys Rev E 66(2):021904(1–11)
  16. Hanert Emmanuel, A comparison of three Eulerian numerical methods for fractional-order transport models, 10.1007/s10652-009-9145-4
  17. Hanert Emmanuel, On the numerical solution of space–time fractional diffusion models, 10.1016/j.compfluid.2010.08.010
  18. Hanert Emmanuel, Front dynamics in a two-species competition model driven by Lévy flights, 10.1016/j.jtbi.2012.01.022
  19. Hanert Emmanuel, Schumacher Eva, Deleersnijder Eric, Front dynamics in fractional-order epidemic models, 10.1016/j.jtbi.2011.03.012
  20. Hilfer R, Applications of Fractional Calculus in Physics, ISBN:9789810234577, 10.1142/3779
  21. Holt David W, Tucker Geoffrey T, Jackson Peter R, Storey Gerard C.A, Amiodarone pharmacokinetics, 10.1016/0002-8703(83)90006-6
  22. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. North-Holland Mathematics Studies, Elsevier Science, Salt Lake City
  23. Magin R (2006) Fractional calculus in bioengineering. Begell House Publishers, New York
  24. Metzler Ralf, Klafter Joseph, The random walk's guide to anomalous diffusion: a fractional dynamics approach, 10.1016/s0370-1573(00)00070-3
  25. Pachepsky Yakov, Timlin Dennis, Rawls Walter, Generalized Richards' equation to simulate water transport in unsaturated soils, 10.1016/s0022-1694(02)00251-2
  26. Petráš Ivo, Magin Richard L., Simulation of drug uptake in a two compartmental fractional model for a biological system, 10.1016/j.cnsns.2011.02.012
  27. Podlubny I (1999) Fractional differential equations. Mathematics in science and engineering, Volume 198. Academic Press, San Diego
  28. Popović Jovan K., Atanacković Milica T., Pilipović Ana S., Rapaić Milan R., Pilipović Stevan, Atanacković Teodor M., A new approach to the compartmental analysis in pharmacokinetics: fractional time evolution of diclofenac, 10.1007/s10928-009-9147-3
  29. Popović Jovan K., Dolićanin Diana, Rapaić Milan R., Popović Stevan L., Pilipović Stevan, Atanacković Teodor M., A nonlinear two compartmental fractional derivative model, 10.1007/s13318-011-0057-6
  30. Popović Jovan K., Pilipović Stevan, Atanacković Teodor M., Two compartmental fractional derivative model with fractional derivatives of different order, 10.1016/j.cnsns.2013.01.004
  31. Popović Jovan K., Poša Mihalj, Popović Kosta J., Popović Dušica J., Milošević Nataša, Tepavčević Vesna, Individualization of a pharmacokinetic model by fractional and nonlinear fit improvement, 10.1007/s13318-012-0097-6
  32. Scalas Enrico, Gorenflo Rudolf, Mainardi Francesco, Fractional calculus and continuous-time finance, 10.1016/s0378-4371(00)00255-7
  33. Trefethen LN et al (2011) Chebfun Version 4.0. The Chebfun Development Team, http://www.maths.ox.ac.uk/chebfun/ . Accessed 5 Nov 2013
  34. Tucker G. T., Jackson P. R., Storey G. C. A., Holt D. W., Amiodarone disposition: Polyexponential, power and gamma functions, 10.1007/bf00543506
  35. Verotta Davide, Fractional compartmental models and multi-term Mittag–Leffler response functions, 10.1007/s10928-010-9155-3
  36. Verotta Davide, Fractional dynamics pharmacokinetics–pharmacodynamic models, 10.1007/s10928-010-9159-z
  37. Weiss Michael, 10.1023/a:1020965005254