User menu

Fair allocation of indivisible goods: the two-agent case

Bibliographic reference Ramaekers, Eve. Fair allocation of indivisible goods: the two-agent case. In: Social Choice and Welfare, Vol. 41, no.2, p. 359-380 (2013)
Permanent URL http://hdl.handle.net/2078.1/134722
  1. Beviá Carmen, Population monotonicity in economies with one indivisible good, 10.1016/0165-4896(96)00814-1
  2. Bouveret S, Lang J (2008) Efficiency and envy-freeness in fair division of indivisible goods: logical representation and complexity. J Artif Intell Res 32: 525–564
  3. Brams SJ (2006) Fair division. In: Weingast BR, Wittman D (eds) Oxford handbook of political economy. Oxford University Press, Oxford
  4. Brams Steven J., Fishburn Peter C., Fair division of indivisible items between two people with identical preferences: Envy-freeness, Pareto-optimality, and equity, 10.1007/s003550050019
  5. Brams Steven J., Edelman Paul H., Fishburn Peter C., FAIR DIVISION OF INDIVISIBLE ITEMS, 10.1023/b:theo.0000024421.85722.0a
  6. Brams Steven J., King Daniel L., Efficient Fair Division : Help the Worst off or Avoid Envy?, 10.1177/1043463105058317
  7. Brams SP, Kilgour DM, Klamler C (2009) The undercut procedure: an algorithm for the envy-free division of indivisible items. MPRA Paper No. 12774, Munich University Library, Munich. http://mpra.ub.uni-muenchen.de/12774/
  8. Brams SP, Kilgour DM, Haeringer G, Halaburda H (2011) Monotone strategyproofness, or how to rank manipulations. Mimeo
  9. D'Aspremont Claude, Gevers Louis, Equity and the Informational Basis of Collective Choice, 10.2307/2297061
  10. Demko Stephen, Hill Theodore P., Equitable distribution of indivisible objects, 10.1016/0165-4896(88)90047-9
  11. Edelman Paul, Fishburn Peter, Fair division of indivisible items among people with similar preferences, 10.1016/s0165-4896(00)00065-2
  12. Ehlers Lars, Klaus Bettina, Coalitional strategy-proof and resource-monotonic solutions for multiple assignment problems, 10.1007/s00355-003-0259-1
  13. Fishburn PC (1970) Utility theory for decision making. Wiley, New York
  14. Grandmont Jean-Michel, Intermediate Preferences and the Majority Rule, 10.2307/1913903
  15. Herreiner Dorothea, Puppe Clemens, A simple procedure for finding equitable allocations of indivisible goods, 10.1007/s003550100119
  16. Kemeny J, Snell J (1962) Mathematical models in the social sciences. Ginn, New York
  17. Klaus Bettina, Miyagawa Eiichi, Strategy-proofness, solidarity, and consistency for multiple assignment problems, 10.1007/s001820100088
  18. Kraft Charles H., Pratt John W., Seidenberg A., Intuitive Probability on Finite Sets, 10.1214/aoms/1177706260
  19. Moulin H., Fair division under joint ownership: Recent results and open problems, 10.1007/bf01560582
  20. Moulin Hervé, Uniform externalities, 10.1016/0047-2727(90)90003-z
  21. Moulin Hervé, Welfare bounds in the fair division problem, 10.1016/0022-0531(91)90125-n
  22. Moulin Herve, An Application of the Shapley Value to Fair Division with Money, 10.2307/2951524
  23. Ramaekers E (2010) Fair allocation of indivisible goods among two agents. CORE discussion papers 2010/87. Université catholique de Louvain, Louvain-la-Neuve. http://www.uclouvain.be/cps/ucl/doc/core/documents/coredp2010_87web.pdf/
  24. Sen AK (1970) Collective choice and social welfare. Holdenday, San Francisco
  25. Sprumont Yves, Intermediate preferences and Rawlsian arbitration rules, 10.1007/bf00187429
  26. Steinhaus H (1948) The problem of fair division. Econometrica 16: 101–104