User menu

On the 3-Pfister Number of Quadratic Forms

Bibliographic reference Raczek, Mélanie. On the 3-Pfister Number of Quadratic Forms. In: Communications in Algebra, Vol. 41, no.1, p. 342-360 (2013)
Permanent URL
  1. Arason Jón Kr, Elman Richard, Jacob Bill, Rigid elements, valuations, and realization of Witt rings, 10.1016/0021-8693(87)90057-3
  2. Brosnan Patrick, Reichstein Zinovy, Vistoli Angelo, Essential dimension, spinor groups, and quadratic forms, 10.4007/annals.2010.171.533
  3. Efrat I., Valuations, Orderings, and Milnor K-Theory, 124 (2006)
  4. Hoffmann D., Doc. Math., 3, 189 (1998)
  5. Lam T. Y., Introduction to Quadratic Forms Over Fields, 67 (2005)
  6. Milnor John, AlgebraicK-theory and quadratic forms, 10.1007/bf01425486
  7. Parimala R., Suresh V., Tignol J.-P., On the Pfister number of quadratic forms, 10.1090/conm/493/09677
  8. Pfister Albrecht, Quadratische Formen in beliebigen K�rpern, 10.1007/bf01389724
  9. Wadsworth Adrian, p-Henselian field:K-theory, Galois cohomology, and graded Witt rings, 10.2140/pjm.1983.105.473
  10. Ware Roger, Valuation rings and rigid elements in fields , 10.4153/cjm-1981-103-0