User menu

Fast-Time Modeling of Ground Effects on Wake Vortex Transport and Decay

Bibliographic reference De Visscher, Ivan ; Lonfils, Timothée ; Winckelmans, Grégoire. Fast-Time Modeling of Ground Effects on Wake Vortex Transport and Decay. In: Journal of Aircraft, Vol. 50, no.5, p. 1514-1525 (2013)
Permanent URL
  1. Spalart Philippe R., AIRPLANE TRAILING VORTICES, 10.1146/annurev.fluid.30.1.107
  2. LambH., Hydrodynamics, 6th ed., Cambridge Univ. Press, Cambridge, U.K., 1932, pp. 202–249, Chap. VII.
  3. HARVEY J. K., PERRY F. J., Flowfield produced by trailing vortices in the vicinity of the ground, 10.2514/3.6415
  4. Barker Steven J., Crow Steven C., The motion of two-dimensional vortex pairs in a ground effect, 10.1017/s0022112077000913
  5. Peace A. J., Riley N., A viscous vortex pair in ground effect, 10.1017/s002211208300083x
  6. Orlandi Paolo, Vortex dipole rebound from a wall, 10.1063/1.857591
  7. Türk L, Coors D, Jacob D, Behavior of wake vortices near the ground over a large range of Reynolds numbers, 10.1016/s1270-9638(99)80031-5
  8. Puel Florent, de Saint Victor Xavier, Interaction of wake vortices with the ground, 10.1016/s1270-9638(00)00139-5
  9. ROBINS ROBERT E., DELISI DONALD P., Potential hazard of aircraft wake vortices in ground effect with crosswind, 10.2514/3.48266
  10. Zheng Z. C., Ash Robert L., Study of aircraft wake vortex behavior near the ground, 10.2514/3.13107
  11. Corjon A., Poinsot T., Behavior of Wake Vortices Near Ground, 10.2514/2.7457
  12. ProctorF. H.HintonD. A.HanJ.SchowalterD. G.LinY. L. “Two Dimensional Wake Vortex Simulations in the Atmosphere: Preliminary Sensitivity Studies,” AIAA Paper 97-0056, 1997.
  13. Spalart P. R., Strelets M. Kh., Travin A. K., Shur M. L., 10.1023/a:1017958425271
  14. Luton J. Alan, Ragab Saad A., The three-dimensional interaction of a vortex pair with a wall, 10.1063/1.869408
  15. Kornev N. V., Reichert G., Three-Dimensional Instability of a Pair of Trailing Vortices near the Ground, 10.2514/2.7
  16. Proctor Fred, Han Jongil, Numerical study of wake vortex interaction with the ground using the terminal area simulation system, 10.2514/6.1999-754
  17. ProctorF. H.HamiltonD. W.HanJ. “Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground,” AIAA Paper 2000-0757, 2000.
  18. DuponcheelM. “Direct and Large-Eddy Simulation of Turbulent Wall-Bounded Flows: Further Development of a Parallel Solver, Improvement of Multiscale Subgrid Models and Investigation of Vortex Pairs in Ground Effect,” Ph.D. Thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2009.
  19. BricteuxL. “Simulation of Turbulent Aircraft Wake Vortex Flows and Their Impact on the Signals Returned by a Coherent Doppler LIDAR System,” Ph.D. Thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2008.
  20. De VisscherI.WinckelmansG.LonfilsT.BricteuxL.DuponcheelM.BourgeoisN. “The WAKE4D Simulation Platform for Predicting Aircraft Wake Vortex Transport and Decay: Description and Examples of Application,” AIAA Paper 2010-7994, 2010.
  21. JacksonW.YarasM.HarveyJ.WinckelmansG.FournierG.BelotserkovskyA. “Wake Vortex Prediction—An Overview,” TP-13629E, 2001.
  22. RobinsR. E.DelisiD. P. “NWRA AVOSS Wake Vortex Prediction Algorithm Version 3.1.1,” NASA CR-2002-211746, 2002.
  23. Holz-aring Frank, pfel, Probabilistic Two-Phase Wake Vortex Decay and Transport Model, 10.2514/2.3096
  24. Holzäpfel Frank, Robins Robert E., Probabilistic Two-Phase Aircraft Wake Vortex Model: Application and Assessment, 10.2514/1.2280
  25. Holzäpfel Frank, Probabilistic Two-Phase Aircraft Wake-Vortex Model: Further Development and Assessment, 10.2514/1.16798
  26. Proctor Fred, Hamilton David, Switzer George, TASS Driven Algorithms for Wake Prediction, 10.2514/6.2006-1073
  27. Holzäpfel Frank, Steen Meiko, Aircraft Wake-Vortex Evolution in Ground Proximity: Analysis and Parameterization, 10.2514/1.23917
  28. Winckelmans G. S., Vortex Methods, 10.1002/0470091355.ecm055
  29. Winckelmans Grégoire, Cocle Roger, Dufresne Louis, Capart Raphaël, Vortex methods and their application to trailing wake vortex simulations, 10.1016/j.crhy.2005.05.001
  30. WinckelmansG.DuquesneT.TreveV.DesenfansO.BricteuxL. “Summary Description of the Models Used in the Vortex Forecast System (VFS), VFS Version with Added Improvements Done After Completion of the Transport Canada Funded Project,” TR Université catholique de Louvain, April 2005.
  31. LonfilsT. “Vortex Particle-Mesh Method with Combined Immersed Boundary and Mesh Refinement Techniques: Application to Bluff-Body and Wake-Vortex Flows,” Ph.D. Thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2011.
  32. De Visscher I., Bricteux L., Winckelmans G., Aircraft Vortices in Stably Stratified and Weakly Turbulent Atmospheres: Simulation and Modeling, 10.2514/1.j051742
  33. Sarpkaya Turgut, New Model for Vortex Decay in the Atmosphere, 10.2514/2.2561
  34. WinckelmansG.Holzä BruinA. “Final Report on Wake Evolution near the Ground,” FAR-Wake Deliverable D 3.F, Université catholique de Louvain, Deutsches Zentrum für Luft- und Raumfahrt and Nationaal Lucht-en Ruimtevaartlaboratorium, May 2008.
  35. GiovanniniA.GeorgesL.GeuzaineP.DuponcheelM.BricteuxL.LonfilsT.WinckelmansG. “Effect of Wind Conditions on the Evolution of a Two-Vortex System near the Ground,” FAR-Wake Deliverable D 3.1.1–3, UPS-IMFT, CENAERO and Université catholique de Louvain, July 2007.
  36. CottinC.DesenfansO.DaeninckG.WinckelmansG. “Towing-Tank Visualizations of Two-Vortex Systems in Ground Effect,” Université catholique de Louvain, FAR-Wake TR 3.1.2-3, 2006.
  37. Bricteux L., Duponcheel M., Winckelmans G., A multiscale subgrid model for both free vortex flows and wall-bounded flows, 10.1063/1.3241991
  38. DenglerK. “EDDF-1 Data Collection Campaign Report,” DLR, CREDOS Research Project D 2-1, 2008. [retrieved Feb. 2010].