User menu

Training with corrupted labels to reinforce a probably correct teamsport player detector

Bibliographic reference Parisot, Pascaline ; Sevilmis, Berk ; De Vleeschouwer, Christophe. Training with corrupted labels to reinforce a probably correct teamsport player detector.Advanced Concepts for Intelligent Vision Systems (Poznan (Poland), du 28/10/2013 au 31/10/2013). In: Advanced Concepts for Intelligent Vision Systems, Poznan, Poland, Lecture Notes in Computer Science Volume 8192, 2013
Permanent URL http://hdl.handle.net/2078.1/133326
  1. Alahi, A., Jacques, L., Boursier, Y., Vandergheynst, P.: Sparsity driven people localization with a heterogeneous network of cameras. Jour. of MIV 41(1-2), 39–58 (2011)
  2. Amit Yali, Geman Donald, Shape Quantization and Recognition with Randomized Trees, 10.1162/neco.1997.9.7.1545
  3. Blum Avrim, Mitchell Tom, Combining labeled and unlabeled data with co-training, 10.1145/279943.279962
  4. Bosch Anna, Zisserman Andrew, Munoz Xavier, Image Classification using Random Forests and Ferns, 10.1109/iccv.2007.4409066
  5. Chen Fan, Delannay Damien, De Vleeschouwer Christophe, An Autonomous Framework to Produce and Distribute Personalized Team-Sport Video Summaries: A Basketball Case Study, 10.1109/tmm.2011.2166379
  6. Delannay, D., Danhier, N., De Vleeschouwer, C.: Detection and recognition of sports (wo)men from multiple views. In: Proc. of ACM/IEEE ICDSC (2009)
  7. Dollar Piotr, Tu Zhuowen, Perona Pietro, Belongie Serge, Integral Channel Features, 10.5244/c.23.91
  8. Dollar P., Wojek C., Schiele B., Perona P., Pedestrian detection: A benchmark, 10.1109/cvpr.2009.5206631
  9. Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D, Object Detection with Discriminatively Trained Part-Based Models, 10.1109/tpami.2009.167
  10. Fleuret F., Berclaz J., Lengagne R., Fua P., Multicamera People Tracking with a Probabilistic Occupancy Map, 10.1109/tpami.2007.1174
  11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Jour. of CSS 55(1), 119–139 (1997)
  12. Geurts Pierre, Ernst Damien, Wehenkel Louis, Extremely randomized trees, 10.1007/s10994-006-6226-1
  13. Khan Saad M., Shah Mubarak, A Multiview Approach to Tracking People in Crowded Scenes Using a Planar Homography Constraint, Computer Vision – ECCV 2006 (2006) ISBN:9783540338383 p.133-146, 10.1007/11744085_11
  14. Levin, A., Viola, P., Freund, Y.: Unsupervised improvement of visual detectors using co-training. In: ICCV, pp. 626–633 (2003)
  15. Maree R., Geurts P., Piater J., Wehenkel L., Random Subwindows for Robust Image Classification, 10.1109/cvpr.2005.287
  16. Nair V., Clark J.J., An unsupervised, online learning framework for moving object detection, 10.1109/cvpr.2004.1315181
  17. Ozuysal M., Calonder M., Lepetit V., Fua P., Fast Keypoint Recognition Using Random Ferns, 10.1109/tpami.2009.23
  18. Roth Peter, Grabner Helmut, Skočaj Danijel, Bischof Horst, Leonardis Aleš, Conservative Visual Learning for Object Detection with Minimal Hand Labeling Effort, Lecture Notes in Computer Science (2005) ISBN:9783540287032 p.293-300, 10.1007/11550518_37
  19. Viola, P., Jones, M.: Robust real-time object detection. In: Proc. of the Int. Workshop on SCTV (2001)
  20. Junliang Xing, Haizhou Ai, Liwei Liu, Shihong Lao, Multiple Player Tracking in Sports Video: A Dual-Mode Two-Way Bayesian Inference Approach With Progressive Observation Modeling, 10.1109/tip.2010.2102045