User menu

Estimation in semiparametric models with missing data

Bibliographic reference Chen, Song Xi ; Van Keilegom, Ingrid. Estimation in semiparametric models with missing data. In: Annals of the Institute of Statistical Mathematics, Vol. 65, no. 4, p. 785-805 (2013)
Permanent URL
  1. Ai Chunrong, Chen Xiaohong, Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions, 10.1111/1468-0262.00470
  2. Chen Qingxia, Zeng Donglin, Ibrahim Joseph G, Sieve Maximum Likelihood Estimation for Regression Models With Covariates Missing at Random, 10.1198/016214507000001058
  3. Chen Xiaohong, Hong Han, Tarozzi Alessandro, Semiparametric efficiency in GMM models with auxiliary data, 10.1214/009053607000000947
  4. Chen Xiaohong, Linton Oliver, Van Keilegom Ingrid, Estimation of Semiparametric Models when the Criterion Function Is Not Smooth, 10.1111/1468-0262.00461
  5. Hardle Wolfgang, Hall Peter, Ichimura Hidehiko, Optimal Smoothing in Single-Index Models, 10.1214/aos/1176349020
  6. Ichimura Hidehiko, Semiparametric least squares (SLS) and weighted SLS estimation of single-index models, 10.1016/0304-4076(93)90114-k
  7. Ichimura, H., Lee, L.-F. (1991). Semiparametric least squares estimation of multiple index models: Single equation estimation. In W. A. Barnett, J. Powell, G. Tauchen (Eds.), Nonparametric and semiparametric methods in statistics and econometrics. Cambridge: Cambridge University Press (Chapter 1).
  8. Liang Hua, Generalized partially linear models with missing covariates, 10.1016/j.jmva.2007.05.004
  9. Little, R. J. A., Rubin, D. B. (2002). Statistical analysis with missing data. New York: Wiley.
  10. McCullagh, P., Nelder, J. A. (1983). Generalized linear models. London: Chapman & Hall.
  11. Müller Ursula U., Estimating linear functionals in nonlinear regression with responses missing at random, 10.1214/08-aos642
  12. Müller, U. U., Schick, A., Wefelmeyer, W. (2006). Imputing responses that are not missing. In M. Nikulin, D. Commenges, C. Huber (Eds.), Probability, statistics and modelling in public health (pp. 350–363). New York: Springer.
  13. Powell James L., Stock James H., Stoker Thomas M., Semiparametric Estimation of Index Coefficients, 10.2307/1913713
  14. Robins James M., Rotnitzky Andrea, Zhao Lue Ping, Estimation of Regression Coefficients When Some Regressors are not Always Observed, 10.1080/01621459.1994.10476818
  15. Robinson P. M., Root-N-Consistent Semiparametric Regression, 10.2307/1912705
  16. RUBIN DONALD B., Inference and missing data, 10.1093/biomet/63.3.581
  17. van der Vaart Aad W., Wellner Jon A., Weak Convergence and Empirical Processes, ISBN:9781475725476, 10.1007/978-1-4757-2545-2
  18. Wang C. Y., Wang Suojin, Gutierrez Roberto G., Carroll R. J., Local linear regression for generalized linear models with missing data, 10.1214/aos/1024691087
  19. Wang Dong, Chen Song Xi, Empirical likelihood for estimating equations with missing values, 10.1214/07-aos585
  20. Wang Qihua, Sun Zhihua, Estimation in partially linear models with missing responses at random, 10.1016/j.jmva.2006.10.003
  21. Wang Qihua, Linton Oliver, Härdle Wolfgang, Semiparametric Regression Analysis With Missing Response at Random, 10.1198/016214504000000449
  22. Wang Qi-Hua, Statistical estimation in partial linear models with covariate data missing at random, 10.1007/s10463-007-0137-1
  23. Wang Yanhua, Shen Junshan, He Shuyuan, Wang Qihua, Estimation of single index model with missing response at random, 10.1016/j.jspi.2009.11.017