User menu

Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability

Bibliographic reference Hautier, Geoffroy ; Shyue Ping Ong ; Anubhav Jain ; Charles J. Moore ; Gerbrand Ceder. Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. In: Physical review. B, Condensed matter and materials physics, Vol. 85, p. 155208 1-18 (2012)
Permanent URL http://hdl.handle.net/2078.1/133019
  1. MRS volume 37 issue 2 Cover and Back matter, 10.1557/mrs.2011.31
  2. Akbarzadeh A. R., Wolverton C., Ozolins V., First-principles determination of crystal structures, phase stability, and reaction thermodynamics in the Li-Mg-Al-H hydrogen storage system, 10.1103/physrevb.79.184102
  3. Alapati Sudhakar V., Karl Johnson J., Sholl David S., Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage, 10.1039/b617927d
  4. Jain Anubhav, Seyed-Reihani S.-A., Fischer Christopher C., Couling David J., Ceder Gerbrand, Green William H., Ab initio screening of metal sorbents for elemental mercury capture in syngas streams, 10.1016/j.ces.2010.01.024
  5. Duan Yuhua, Sorescu Dan C., CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study, 10.1063/1.3473043
  6. Meredig B., Wolverton C., First-principles thermodynamic framework for the evaluation of thermochemicalH2O- orCO2-splitting materials, 10.1103/physrevb.80.245119
  7. Duan Yuhua, Zhang Bo, Sorescu Dan C., Johnson J. Karl, CO2 capture properties of M–C–O–H (M=Li, Na, K) systems: A combined density functional theory and lattice phonon dynamics study, 10.1016/j.jssc.2010.12.005
  8. van Setten M. J., de Wijs G. A., Popa V. A., Brocks G., Ab initiostudy ofMg(AlH4)2, 10.1103/physrevb.72.073107
  9. Wang L., Maxisch T., Ceder G., A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials, 10.1021/cm0620943
  10. Ping Ong Shyue, Wang Lei, Kang Byoungwoo, Ceder Gerbrand, Li−Fe−P−O2Phase Diagram from First Principles Calculations, 10.1021/cm702327g
  11. Ong Shyue Ping, Jain Anubhav, Hautier Geoffroy, Kang Byoungwoo, Ceder Gerbrand, Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations, 10.1016/j.elecom.2010.01.010
  12. Kim Jae Chul, Moore Charles J., Kang Byoungwoo, Hautier Geoffroy, Jain Anubhav, Ceder Gerbrand, Synthesis and Electrochemical Properties of Monoclinic LiMnBO[sub 3] as a Li Intercalation Material, 10.1149/1.3536532
  13. Doe Robert E., Persson Kristin A., Meng Y. Shirley, Ceder Gerbrand, First-Principles Investigation of the Li−Fe−F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium, 10.1021/cm801105p
  14. Doe Robert E., Persson Kristin A., Hautier Geoffroy, Ceder Gerbrand, First Principles Study of the Li–Bi–F Phase Diagram and Bismuth Fluoride Conversion Reactions with Lithium, 10.1149/1.3117249
  15. Kolmogorov Aleksey N., Calandra Matteo, Curtarolo Stefano, Thermodynamic stabilities of ternary metal borides: Anab initioguide for synthesizing layered superconductors, 10.1103/physrevb.78.094520
  16. Levy Ohad, Chepulskii Roman V., Hart Gus L. W., Curtarolo Stefano, The New Face of Rhodium Alloys: Revealing Ordered Structures from First Principles, 10.1021/ja908879y
  17. Kolmogorov A. N., Shah S., Margine E. R., Bialon A. F., Hammerschmidt T., Drautz R., New Superconducting and Semiconducting Fe-B Compounds Predicted with anAb InitioEvolutionary Search, 10.1103/physrevlett.105.217003
  18. Hautier Geoffroy, Fischer Christopher C., Jain Anubhav, Mueller Tim, Ceder Gerbrand, Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory, 10.1021/cm100795d
  19. Zhang Xiuwen, Zunger Alex, Trimarchi Giancarlo, Structure prediction and targeted synthesis: A new NanN2 diazenide crystalline structure, 10.1063/1.3488440
  20. Hautier Geoffroy, Jain Anubhav, Ong Shyue Ping, Kang Byoungwoo, Moore Charles, Doe Robert, Ceder Gerbrand, Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughputab InitioCalculations, 10.1021/cm200949v
  21. Mueller Tim, Hautier Geoffroy, Jain Anubhav, Ceder Gerbrand, Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing, 10.1021/cm200753g
  22. Hautier Geoffroy, Jain Anubhav, Chen Hailong, Moore Charles, Ong Shyue Ping, Ceder Gerbrand, Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations, 10.1039/c1jm12216a
  23. Jóhannesson G. H., Bligaard T., Ruban A. V., Skriver H. L., Jacobsen K. W., Nørskov J. K., Combined Electronic Structure and Evolutionary Search Approach to Materials Design, 10.1103/physrevlett.88.255506
  24. Feng Ji, Hennig Richard G., Ashcroft N. W., Hoffmann Roald, Emergent reduction of electronic state dimensionality in dense ordered Li-Be alloys, 10.1038/nature06442
  25. von Appen J�rg, Dronskowski Richard, Predicting New Ferromagnetic Nitrides from Electronic Structure Theory: IrFe3N and RhFe3N, 10.1002/anie.200462247
  26. Fredeman D. J., Tobash P. H., Torrez M. A., Thompson J. D., Bauer E. D., Ronning F., Tipton W. W., Rudin Sven P., Hennig R. G., Computationally driven experimental discovery of the CeIr4In compound, 10.1103/physrevb.83.224102
  27. Castelli Ivano E., Olsen Thomas, Datta Soumendu, Landis David D., Dahl Søren, Thygesen Kristian S., Jacobsen Karsten W., Computational screening of perovskite metal oxides for optimal solar light capture, 10.1039/c1ee02717d
  28. Calle-Vallejo Federico, Martínez José I., García-Lastra Juan M., Mogensen Mogens, Rossmeisl Jan, Trends in Stability of Perovskite Oxides, 10.1002/anie.201002301
  29. Martinez Jean-Raphael, Mohn Chris E., Stølen Svein, Søndenå Rune, What can a “quantum black-box” do for the inorganic thermochemist?, 10.1039/b600485g
  30. Curtiss Larry A., Raghavachari Krishnan, Trucks Gary W., Pople John A., Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds, 10.1063/1.460205
  31. Curtiss Larry A., Raghavachari Krishnan, Redfern Paul C., Rassolov Vitaly, Pople John A., Gaussian-3 (G3) theory for molecules containing first and second-row atoms, 10.1063/1.477422
  32. O. Kubaschewski, Materials Thermochemistry (1993)
  33. M. W. Chase, NIST-JANAF Thermochemical Tables (1998)
  34. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
  35. Anisimov Vladimir I., Zaanen Jan, Andersen Ole K., Band theory and Mott insulators: HubbardUinstead of StonerI, 10.1103/physrevb.44.943
  36. Anisimov Vladimir I, Aryasetiawan F, Lichtenstein A I, First-principles calculations of the electronic structure and spectra of strongly correlated systems: theLDA+Umethod, 10.1088/0953-8984/9/4/002
  37. Wang Lei, Maxisch Thomas, Ceder Gerbrand, Oxidation energies of transition metal oxides within theGGA+Uframework, 10.1103/physrevb.73.195107
  38. Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, 10.1016/0927-0256(96)00008-0
  39. Blöchl P. E., Projector augmented-wave method, 10.1103/physrevb.50.17953
  40. Jain Anubhav, Hautier Geoffroy, Moore Charles J., Ping Ong Shyue, Fischer Christopher C., Mueller Tim, Persson Kristin A., Ceder Gerbrand, A high-throughput infrastructure for density functional theory calculations, 10.1016/j.commatsci.2011.02.023
  41. Hart Gus L. W., Forcade Rodney W., Algorithm for generating derivative structures, 10.1103/physrevb.77.224115
  42. Setyawan Wahyu, Curtarolo Stefano, High-throughput electronic band structure calculations: Challenges and tools, 10.1016/j.commatsci.2010.05.010
  43. Setyawan Wahyu, Gaume Romain M., Lam Stephanie, Feigelson Robert S., Curtarolo Stefano, High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials, 10.1021/co200012w
  44. King B. G., Heat Capacities at Low Temperatures and Entropies of Five Spinel Minerals, 10.1021/j150538a006
  45. Ke Xuezhi, Kuwabara Akihide, Tanaka Isao, Cubic and orthorhombic structures of aluminum hydrideAlH3predicted by a first-principles study, 10.1103/physrevb.71.184107
  46. Mei Zhi-Gang, Wang Yi, Shang Shun-Li, Liu Zi-Kui, First-Principles Study of Lattice Dynamics and Thermodynamics of TiO2Polymorphs, 10.1021/ic200349p
  47. Franchini C., Podloucky R., Paier J., Marsman M., Kresse G., Ground-state properties of multivalent manganese oxides: Density functional and hybrid density functional calculations, 10.1103/physrevb.75.195128
  48. Lany Stephan, Semiconductor thermochemistry in density functional calculations, 10.1103/physrevb.78.245207
  49. Pettifor David G., Structure maps in alloy design, 10.1039/ft9908601209
  50. Skorodumova N. V., Ahuja R., Simak S. I., Abrikosov I. A., Johansson B., Lundqvist B. I., Electronic, bonding, and optical properties ofCeO2andCe2O3from first principles, 10.1103/physrevb.64.115108
  51. Loschen Christoph, Carrasco Javier, Neyman Konstantin M., Illas Francesc, First-principlesLDA+UandGGA+Ustudy of cerium oxides: Dependence on the effective U parameter, 10.1103/physrevb.75.035115
  52. Ahuja Rajeev, Blomqvist Andreas, Larsson Peter, Pyykkö Pekka, Zaleski-Ejgierd Patryk, Relativity and the Lead-Acid Battery, 10.1103/physrevlett.106.018301
  53. Lindemer Terrence B., Besmann Theodore M., Johnson Carl E., Thermodynamic review and calculations—alkali-metal oxide systems with nuclear fuels, fission products, and structural materials, 10.1016/0022-3115(81)90533-x
  54. Mathews Tom, Krishnamurthy D., Gnanasekaran T., An electrochemical investigation of the thermodynamic properties of Na2Mo2O7 and Na2NiO3, 10.1016/s0022-3115(97)00075-5
  55. O'Hare P.A.G., Thermochemistry of molybdates III. Standard enthalpy of formation of barium molybdate, and the standard entropy and standard Gibbs energy of formation of the aqueous molybdate ion, 10.1016/0021-9614(74)90003-2
  56. Shukla N.K., Prasad Rajendra, Sood D.D., The standard molar enthalpies of formation at the temperature T = 298.15 K of barium molybdate BaMoO4(cr) and strontium molybdate SrMoO4(cr), 10.1006/jcht.1993.1047
  57. Singh Ziley, Dash Smruti, Prasad R, Venugopal V, Enthalpy increment measurements of SrMoO4(s) and BaMoO4(s), 10.1016/s0925-8388(98)00663-x
  58. A. Olin, Chemical Thermodynamics of Selenium (2005)
  59. Tardy Yves, Vieillard Philippe, Relationships among Gibbs free energies and enthalpies of formation of phosphates, oxides and aqueous ions, 10.1007/bf00371677
  60. Eliason Scott, Maximum Likelihood Estimation, ISBN:9780803941076, 10.4135/9781412984928
  61. EFRON BRADLEY, HINKLEY DAVID V., Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information, 10.1093/biomet/65.3.457
  62. Jain Anubhav, Hautier Geoffroy, Ong Shyue Ping, Moore Charles J., Fischer Christopher C., Persson Kristin A., Ceder Gerbrand, Formation enthalpies by mixing GGA and GGA+Ucalculations, 10.1103/physrevb.84.045115
  63. Mo Yifei, Ong Shyue Ping, Ceder Gerbrand, First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery, 10.1103/physrevb.84.205446
  64. Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Hybrid functionals based on a screened Coulomb potential, 10.1063/1.1564060
  65. Armiento R., Mattsson A. E., Functional designed to include surface effects in self-consistent density functional theory, 10.1103/physrevb.72.085108
  66. Mattsson Ann E., Armiento Rickard, Implementing and testing the AM05 spin density functional, 10.1103/physrevb.79.155101
  67. Chevrier V. L., Ong S. P., Armiento R., Chan M. K. Y., Ceder G., Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds, 10.1103/physrevb.82.075122
  68. Foulkes W. M. C., Mitas L., Needs R. J., Rajagopal G., Quantum Monte Carlo simulations of solids, 10.1103/revmodphys.73.33
  69. Flotow Howard E, Osborne Darrell W, The heat capacity of dicesium monoxide (Cs2O) from 5 to 350 K and the Gibbs energy of formation to 763 K, 10.1016/0021-9614(74)90256-0
  70. S. Stolen, Am. Mineral., 81, 973 (1996)