User menu

Retrieving the Bioenergy Potential from Maize Crops Using Hyperspectral Remote Sensing

Bibliographic reference Udelhoven, Thomas ; Delfosse, Philippe ; Bossung, Christian ; Ronellenfitsch, Franz ; Mayer, Fréderic ; et. al. Retrieving the Bioenergy Potential from Maize Crops Using Hyperspectral Remote Sensing. In: Remote Sensing, Vol. 5, no.1, p. 254-273 (2013)
Permanent URL
  4. Singh Sumanjeet, Global food crisis: magnitude, causes and policy measures, 10.1108/03068290910921163
  5. Chynoweth, 279 (1987)
  6. Malina, 7, 214 (1992)
  7. Ahring, 220 (2003)
  8. Ahring, 212 (2003)
  9. Gerardi, 177 (2003)
  10. Plaizier J.C., Krause D.O., Gozho G.N., McBride B.W., Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences, 10.1016/j.tvjl.2007.12.016
  11. Buswell A. M., Mueller H. F., Mechanism of Methane Fermentation, 10.1021/ie50507a033
  12. Boyle, 119 (1976)
  13. Schittenhelm Siegfried, Chemical composition and methane yield of maize hybrids with contrasting maturity, 10.1016/j.eja.2008.04.001
  14. Hoffmann, J. Anim. Sci, 79, 500 (2001)
  15. Hollung Kristin, Øverland Margareth, Hrustić Milica, Sekulić Petar, Miladinović Jegor, Martens Harald, Narum Bjørg, Sahlstrøm Stefan, Sørensen Mette, Storebakken Trond, Skrede Anders, Evaluation of Nonstarch Polysaccharides and Oligosaccharide Content of Different Soybean Varieties (Glycine max) by Near-Infrared Spectroscopy and Proteomics, 10.1021/jf051438r
  16. KUMAGAI Masanori, OHISA Naganori, AMANO Toshio, OGAWA Nobuaki, Canonical Discriminant Analysis of Cadmium Content Levels in Unpolished Rice Using a Portable Near-Infrared Spectrometer, 10.2116/analsci.19.1553
  17. Martens, 59 (2001)
  18. SATO Tetsuo, New Estimation Method for Fatty Acid Composition in Oil Using Near Infrared Spectroscopy, 10.1271/bbb.66.2543
  19. Park R.S., Agnew R.E., Kilpatrick D.J., The effect of freezing and thawing on grass silage quality predictions based on near infrared reflectance spectroscopy, 10.1016/s0377-8401(02)00247-x
  20. Tatavarti Aditya S., Fahmy Raafat, Wu Huiquan, Hussain Ajaz S., Marnane William, Bensley Dennis, Hollenbeck Gary, Hoag Stephen W., Assessment of NIR spectroscopy for nondestructive analysis of physical and chemical attributes of sulfamethazine bolus dosage forms, 10.1208/pt060115
  21. Mentink R.L., Hoffman P.C., Bauman L.M., Utility of Near-Infrared Reflectance Spectroscopy to Predict Nutrient Composition and In Vitro Digestibility of Total Mixed Rations, 10.3168/jds.s0022-0302(06)72303-7
  22. Galvão Roberto Kawakami Harrop, Araújo Mário César Ugulino, Silva Edvan Cirino, José Gledson Emidio, Soares Sófacles Figueredo Carreiro, Paiva Henrique Mohallem, Cross-validation for the selection of spectral variables using the successive projections algorithm, 10.1590/s0103-50532007000800021
  23. Dardenne P., Andrieu J., Barrière Y., Biston R., Demarquilly C., Femenias N., Lila M., Maupetit P., Rivière F., Ronsin T., Composition and nutritive value of whole maize plants fed fresh to sheep. II. Prediction of the in vivo organic matter digestibility, 10.1051/animres:19930302
  24. De Boever J.L., Cottyn B.G., De Brabander D.L., Vanacker J.M., Boucqué Ch.V., Prediction of the feeding value of maize silages by chemical parameters, in vitro digestibility and NIRS, 10.1016/s0377-8401(96)01101-7
  25. Lovett D.K, Deaville E.R, Mould F, Givens D.I, Owen E, Using near infrared reflectance spectroscopy (NIRS) to predict the biological parameters of maize silage, 10.1016/j.anifeedsci.2004.02.007
  26. Sørensen L.K., Prediction of Fermentation Parameters in Grass and Corn Silage by Near Infrared Spectroscopy, 10.3168/jds.s0022-0302(04)73522-5
  27. Todorov N., Atanassova S., Pavlov D., Grigorova R., Prediction of dry matter and protein degradability of forages by near infrared spectroscopy, 10.1016/0301-6226(94)90158-9
  28. Waters C.J., Givens D.I., Nitrogen degradability of fresh herbage: effect of maturity and growth type, and prediction from chemical composition and by near infrared reflectance spectroscopy, 10.1016/0377-8401(92)90023-y
  29. Schaepman Michael E., de Vos Lieve, Itten Klaus I., APEX-airborne PRISM experiment: hyperspectral radiometric performance analysis for the simulation of the future ESA land surface processes earth explorer mission, 10.1117/12.328109
  30. Richter R., Schläpfer D., Müller A., An automatic atmospheric correction algorithm for visible/NIR imagery, 10.1080/01431160500486690
  31. 92 (2006)
  32. (1987)
  33. Kowalewska, Oceanologia, 43, 315 (2001)
  34. Woodman Herbert Ernest, The nature of the pigment of silage, 10.1017/s0021859600003348
  35. Wold Svante, Sjöström Michael, Eriksson Lennart, PLS-regression: a basic tool of chemometrics, 10.1016/s0169-7439(01)00155-1
  36. Cho M. A., Skidmore A. K., Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy, 10.1080/01431160802392596
  37. Koppe Wolfgang, Li Fei, Gnyp Martin L., Miao Yuxin, Jia Liangliang, Chen Xinping, Zhang Fusuo, Bareth Georg, Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North China Plain, 10.1127/1432-8364/2010/0047
  38. Darvishzadeh Roshanak, Skidmore Andrew, Atzberger Clement, van Wieren Sip, Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture, 10.1016/j.jag.2008.02.005
  39. Ranney, 10 (1980)
  40. Gehrung J., Scholz Y., The application of simulated NPP data in improving the assessment of the spatial distribution of biomass in Europe, 10.1016/j.biombioe.2008.11.005
  41. Phillips Victor D., Liu Wei, Merriam Robert A., Singh Devindar, Biomass system model estimates of short-rotation hardwood production in Hawaii, 10.1016/0961-9534(93)90037-5
  42. Liu Wei, Merriam Robert A., Phillips Victor D., Singh Devindar, Estimating short-rotation Eucalyptus saligna production in Hawaii: An integrated yield and economic model, 10.1016/0960-8524(93)90109-o
  43. Voivontas D., Assimacopoulos D., Koukios E.G., Aessessment of biomass potential for power production: a GIS based method, 10.1016/s0961-9534(00)00070-2
  44. Milbrandt (2005)
  45. Beccali Marco, Columba Pietro, D’Alberti Vincenzo, Franzitta Vincenzo, Assessment of bioenergy potential in Sicily: A GIS-based support methodology, 10.1016/j.biombioe.2008.04.019
  46. Svendsen H., Hansen S., Jensen H.E., Simulation of crop production, water and nitrogen balances in two German agro-ecosystems using the DAISY model, 10.1016/0304-3800(94)00171-d
  47. Diekkrüger B., Söndgerath D., Kersebaum K.C., McVoy C.W., Validity of agroecosystem models a comparison of results of different models applied to the same data set, 10.1016/0304-3800(94)00157-d
  48. Wallach, 446 (2006)