
Model-driven software evolution:

An alternative research agenda

Tom Mens1, Xavier Blanc2, and Kim Mens3

1 Service de Génie Logiciel, Université de Mons-Hainaut

Av. du champ de Mars 6, 7000 Mons, Belgium

tom.mens@umh.ac.be
2 LIP6

Paris, France

xavier.blanc
3 UCL

kim.mens

1 Introduction

In the realm of software engineering, we are witnessing an increasing momentum to-

wards the use of models as primary artefacts for developing software systems. This gave

rise to a new paradigm commonly referred to as model-driven software engineering [1].

This use of models promises to cope with the intrinsic complexity of software-intensive

systems by raising the level of abstraction, and by hiding the accidental complexity of

the underlying technology as much as possible [2]. The use of models thus opens up

new possibilities for creating, analysing, manipulating and formally reasoning about

systems at a high level of abstraction. Evolution of models can be achieved by rely-

ing on sophisticated mechanisms of model transformation [3]. Model transformation

techniques and languages enable a wide range of different automated activities such

as translation of models (expressed in different modelling languages), generating code

from models, model refinement, model synthesis or model extraction, model restructur-

ing, etc.

Most of the research in model-driven engineering (MDE) focuses on the vertical

dimension (see Figure 1), such as how to generate code from models (forward engineer-

ing), how to obtain high-level abstractions from code (reverse engineering), and how to

synchronise and co-evolve both levels of abstraction. This is for example very clear in

the OMG’s MDA approach [4] that explicitly addresses the problem of migrating from

platform-independent models (PIM) to platform-specific models (PSM). It is also an

integral part of Microsoft’s software factory approach targeted towards domain-specific

languages [5].

2 Research Challenges

van Deursen et al. [6] have established a research agenda of challenges to be addressed

in this vertical dimension. The goal of this paper, is to shed an alternative view on the

problem, by identifying those challenges that have to do with the horizontal dimension

instead, i.e., all activities related to the process of model evolution.



2 T. Mens, X. Blanc, K. Mens

abstraction
level

time

model

code

generatereverse
engineer

modelevolve

Fig. 1. Two orthogonal dimensios of model transformation, according to [3]. The focus of this

article is on the horizontal dimension.

2.1 Model independence

How can we represent and manipulate different types of models in a uniform way,

without needing to change the infrastructure (tools, mechanisms and formalisms) for

reasoning about these models? Such model independence is of scientific as well as

practical importance, because we want our solutions to be sufficiently generic, in order

to be applicable beyond mere software models. Indeed, we want to be able to support

an as wide range of models as possible. [7] have illustrated the feasibility of achieving

such model independence, by implementing a generic model transformation that can be

used it to transform domain-specific models.

2.2 Metamodel evolution

As pointed out by various authors [8, 9], not only models evolve, but so do their meta-

models or languages in which the models are expressed, though at a lower pace. In or-

der to ensure that models do not become obsolete because their languages have evolved,

we need mechanisms to support the co-evolution between models and their associated

metamodels. In a similar vein, the model transformation languages may evolve in paral-

lel with the model transformations being used, so we also need to support co-evolution

at this level.

2.3 Model quality

With respect to model quality, several research questions naturally arise. The first ques-

tion is how to provide a precise definition of model quality. A model can have many dif-

ferent non-functional properties or quality characteristics that may be desirable (some

examples are: usability, readability, performance and adaptability). It remains an open

challenge to identify which qualities are necessary and sufficient for which type of



Model-driven software evolution 3

stakeholder, as well as how to specify these qualities formally, and how to relate them

to one another.

A related logical question concerns how we can objectively measure, predict and

control the quality of models during model evolution. One possible solution is by re-

sorting to model metrics, the model-level equivalent of software metrics [10]. The chal-

lenge here is to define model metrics in such a way that they correlate well with external

model quality characteristics. A more pragmatic way of assessing model quality is by

resorting to what we call model smells. These are the model-level equivalent of bad

smells, a term originally coined by Kent Beck to refer to structures in the code that sug-

gest opportunities for improvement. Typical model smells have to do with redundancies,

ambiguities, inconsistencies, incompleteness, non-adherence to design conventions or

standards, abuse of the modelling notation, and so on. The challenge is to come up with

a comprehensive and commonly accepted list of model smells, as well as tool support

to detect such smells in an automated way.

2.4 Model improvement

In order to improve model quality, we need to resort to the technique of model refactor-

ing, the model-level equivalent of program refactoring. An important point of attention

is the study of the relation between model metrics and model refactoring. In particular,

we need to assess to which extent model refactorings affect metric values. [11–13] have

started to explore this problem, though mainly at code level. A formal specification of

model refactoring is required to address these issues at model level.

In a similar vein, we also require a precise understanding of the relation between

model smells and model refactoring, in order to be able to suggest, for any given model

smell, appropriate model refactorings that can remove this smell. The other way around,

we need to ensure that model refactorings effectively reduce the number of smells.

In recent work, we have started to explore the formalisms of graph transformation

and description logics as underlying foundations for model refactoring [14–16]. An

important point of attention here is the need for a composition mechanism that allows

us to reason about composite refactorings in a scaleable way. We also need to study to

which extent the formalisms allow us to verify that a given transformation preserves

certain properties (e.g. structure-preserving, behaviour-preserving, quality-preserving).

2.5 Model inconsistency

In a model-driven development approach, inconsistencies inevitable arise, because a

system description is composed of a wide variety of diverse models, some of which are

maintained in parallel, and most of which are subject to continuous evolution. There-

fore, there is a need to formally define the various types of model inconsistencies in

a uniform framework, and to resort to formally founded techniques to detect and re-

solve these model inconsistencies. A prerequisite for doing so is to provide traceability

mechanisms, by making explicit the dependencies between models. In recent work, we

have proposed to manage model inconsistencies by relying on the formalisms of graph

transformation [17, 18] and description logics [19, 20]. In interesting way to maintain



4 T. Mens, X. Blanc, K. Mens

the consistency between different model views seems to be the use of triple graph gram-

mars [21].

2.6 Conflict analysis

Another important challenge has to do with the ability to cope with conflicting goals.

During model evolution, trade-offs need to be made all the time:

– When trying to improve model quality, different quality goals may be in contradic-

tion with each other. For example, optimising the understandability of a model may

go at the expense of its maintainability.

– In the context of inconsistency management, for a given model inconsistency there

may be different inconsistency resolution strategies that are in mutual conflict.

– In the context of model refactoring, a given model smell may be resolved in various

ways, by applying different model refactorings. Vice versa, a given model refactor-

ing may simultaneously remove multiple model smells, but may also introduce new

smells.

It should be clear from the discussion above that uniform formal support for analysing

and resolving conflicts during model transformation is needed. Recently, we have started

to explore formal techniques based on critical pair analysis and sequential dependency

analysis to detect and reconcile conflicting concerns [17, 18, 15].

2.7 Collaborative modelling

Another important challenge in model-driven software evolution is how to cope with

models that evolve in a distributed collaborative setting? This naturally leads to a whole

range of problems that need to be addressed, such as the need for model differencing,

model versioning, model merging or model integration, model synchronisation, and so

on. These issues are under active study by various research groups [22] and are being

integrated as services in the so-called ModelBus framework [23].

2.8 Choice of formalism

A currently unresolved question is which formalisms are most suited to specify and

reason about model evolution, model quality and model consistency. Each type of for-

malism will have its own advantages (in terms of the formal properties it can express).

Given the current state-of-the-art, we can primarily discern three types of formalisms:

based on graph transformation, based on logic, and based on tree rewriting.

Graphs are an obvious choice for representing models, since most types of mod-

els have an intrinsic graph-based structure. As a direct consequence, it makes sense to

express model evolution by resorting to graph transformation approaches. Many useful

theoretical properties exist, such as results about parallellism, confluence, termination

and critical pair analysis. Model independence of the approach (i.e., the ability to apply

it to a wide range models) can be achieved by resorting to a technique similar to meta-

modelling in model-driven engineering: each graph and graph transformation needs to



Model-driven software evolution 5

conform to the constraints imposed by a type graph, used to describe the syntax of the

language.

If we want to reason about the behaviour of software, logic-based formalisms seem

to be the most interesting choice. Their declarative or descriptive semantics allow for a

more or less direct representation of the behaviour of software artefacts. One of the logic

formalisms that we will explore is the use of description logics [24]. This is a family

of decidable logic-based knowledge representation formalisms with expressiveness as

the characterising factor. While all state-of-the-art description logics are decidable, the

higher the expressiveness, the higher the computational complexity of reasoning tasks

becomes. Tool support for different variants of description logics is readily available

(e.g., RACER), which facilitates practical experiments with these formalisms. In the

past we have already experimented with description logics in the context of consistency

maintenance of UML models [19] and model refactoring [20]. Other logic-based vari-

ants, such as temporal logics, may also be suitable for reasoning about model evolution.

A challenge is how to combine these different formalisms toghether into a single

uniform framework. Initial results are available that combine graph transformation tech-

niques with a logic-based approach in order to support software evolution (Rtschke and

Schrr, 2006).

2.9 Scaleability and incrementality

An important practical challenge is the ability to provide tool support that is scalable

to large and complex models, as used in industry. This requirement imposes important

restrictions on the underlying formalisms to be used. As an example, consider existing

approaches to formal verification and model checking, typically based on some vari-

ant of temporal logics. Their main problem is that they only allow to verify properties

on a model in its entirety. Even a smal incremental change to this model typically re-

quires reverification of the proven properties for the entire model. With an incremental

approach, the effort needed to reverify a given property would become proportional to

the change made to the model. It is therefore essential to find truly incremental tech-

niques, in order to close the gap between formal techniques and pragmatic software

development approaches, which are inherently evolutionary in nature.

That it is indeed possible to come up with such an incremental approach, is illus-

trated by Egyed [25, 26], who proposes a lightweight incremental approach to model

consistency checking that scales up to large industrial models. In a similar vein, De

Fombelle [27] provides a formal treatment of incremental consistency checking of UML

models. We therefore propose to build further on this work in order to come to a truly

incremental, yet scalable support for model evolution tools.

3 Summary

Clearly, most of the challenges identified above interact and overlap. Therefore, they

cannot be addressed in isolation. For example, formal solutions that allow us to specify

and perform model refactorings, will have to be directly linked to solutions addressing



6 T. Mens, X. Blanc, K. Mens

model quality and model consistency, since the main goal of applying a model refac-

toring is to improve model quality in a well-defined way, while preserving the overall

model consistency. Hence, whatever technique and formalism that we come up with

needs to guarantee that this is actually the case. Therefore, the research community on

model evolution needs to combine its efforts to tackle these issues in an integrated way.

Also, let us repeat that the challenges put forward in this paper show only one part

of the problem, as they focus on the horizontal dimension only. For a detailed list of

other challenges related to model-driven software evolution, we refer to [6].

References

1. Stahl, T., Völter, M.: Model Driven Software Development: Technology, Engineering, Man-

agement. John Wiley & Sons (2006)

2. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering. 20th anniversary

edn. Addison-Wesley (1995)

3. Mens, T., Gorp, P.V.: A taxonomy of model transformation. In: Proc. International Workshop

on Graph and Model Transformation (GraMoT 2005). Volume 152., Elsevier (2006)

4. Kleppe, A., Warmer, J., Bast, W. Addison-Wesley (2003)

5. Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.: Software Factories: Assembling Ap-

plications with Patterns, Models, Frameworks, and Tools. John Wiley & Sons (2004)

6. van Deursen, A., Visser, E., Warmer, J.: Model-driven software evolution: A research agenda.

In: Proc. CSMR Workshop on Model-Driven Software Evolution. (2007)

7. Zhang, J., Lin, Y., Gray, J.: Generic and Domain-Specific Model Refactoring using a Model

Transformation Engine. In: Model-driven Software Development - Research and Practice in

Software Engineering. Springer (2005)

8. Favre, J.M.: Languages evolve too! changing the software time scale. In: Proc. Int’l Work-

shop on Principles of Software Evolution (IWPSE), Los Alamitos, CA, USA, IEEE Com-

puter Society (2005) 33–44

9. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.: Chal-

lenges in software evolution. In: Proc. Int’l Workshop on Principles of Software Evolution

(IWPSE). (2005)

10. Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. 2nd edn.

International Thomson Computer Press, London, UK (1997)

11. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding refactorings via change metrics. In: Proc.

ACM SIGPLAN Conf. Object-Oriented Programming, Systems, Languages and Applica-

tions (OOPSLA). Volume 35 of SIGPLAN Notices., ACM Press (2000) 166–177

12. Tahvildari, L., Kontogiannis, K.: A metric-based approach to enhance design quality through

meta-pattern transformations. In: Proc. European Conf. Software Maintenance and Reengi-

neering (CSMR), IEEE Computer Society Press (2003) 183–192

13. Du Bois, B.: A Study of Quality Improvements by refactoring. PhD thesis, University of

Antwerp (2006)

14. Mens, T.: On the use of graph transformations for model refactoring. In Ralf Lämmel,

João Saraiva, J.V., ed.: Generative and transformational techniques in software engineering.

Volume 4143 of Lecture Notes in Computer Science., Springer (2006) 219–257

15. Mens, T., Taentzer, G., Runge, O.: Analyzing refactoring dependencies using graph trans-

formation. Software and Systems Modeling (2007)

16. Van Der Straeten, R., Mens, T., Jonckers, V.: A formal approach to model refactoring and

model refinement. Software and Systems Modeling (2007) 139–162



Model-driven software evolution 7

17. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolving model inconsistencies

using transformation dependency analysis. In Nierstrasz, O., Whittle, J., Harel, D., Reggio,

G., eds.: Model Driven Engineering Languages and Systems. Volume 4199 of Lecture Notes

in Computer Science., Springer-Verlag (2006) 200–214

18. Mens, T., Van Der Straeten, R.: Incremental resolution of model inconsistencies. In Fi-

adeiro, J.L., Schobbens, P.Y., eds.: Algebraic Description Techniques. Volume 4409 of Lec-

ture Notes in Computer Science., Springer-Verlag (2007) 111–127

19. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logics to

maintain consistency between UML models. In Stevens, P., Whittle, J., Booch, G., eds.:

UML 2003 - The Unified Modeling Language. Volume 2863 of Lecture Notes in Computer

Science., Springer-Verlag (2003) 326–340

20. Van Der Straeten, R., Jonckers, V., Mens, T.: Supporting model refactorings through be-

haviour inheritance consistencies. In Thomas Baar, Alfred Strohmeier, A.M., ed.: UML

2004 - The Unified Modeling Language. Volume 3273 of Lecture Notes in Computer Sci-

ence., Springer-Verlag (2004) 305–319

21. Guerra, E., Lara, J.D.: Model view management with triple graph transformation systems.

In: Proc. Int’l Conf. Graph Transformation. Volume 4178 of Lecture Notes in Computer

Science., Springer (2006) 351–366

22. Sriplakich, P., Blanc, X., Gervais, M.P.: Supporting collaborative development in an open

mda environment. In: Proc. Int’l Conf. Software Maintenance. (2006) 244–253

23. Blanc, X., Gervais, M.P., Sriplakich, P.: Model bus : Towards the interoperability of mod-

elling tool. In: Proc. European workshop on Model Driven Architecture: Foundations and

Applications (MDAFA). Volume 3599 of Lecture Notes in Computer Science., Springer

(2005)

24. Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Hand-

book: Theory, Implementation and Applications. Cambridge University Press (2003)

25. Egyed, A.: Instant consistency checking for the UML. In: Proc. Int’l Conf. Software Engi-

neering (ICSE), ACM (2006)

26. Egyed, A.: Fixing inconsistencies in uml models. In: Proc. Int’l Conf. Software Engineering,,

ACM Press (2007)

27. De Fombelle, G.: Gestion incrémentale des propriétés de cohérence structurelle dans

l’ingénierie dirigée par les modèles. PhD thesis, Université Pierre et Marie Curie, Paris

(2007)


