%, Wi,
PN
&) L — Y
z 4 @
=+ LOUVAIN
€y ¥ School of Management

‘oas™

A Business-Driven Process for COTS-Based System
Development Centered on Agents

by Sodany Kiv

A thesis submitted in fulfillment of the requirements for the degree of
Doctor in Economics and Management Sciences
of the Université catholique de Louvain
Examination Committee:
Prof. Manuel Kolp (UCL), Advisor
Prof. Yves Wautelet (HUB/KUL), Co-Advisor
Prof. Jean Vanderdonckt (UCL), Examiner
Prof. Stéphane Faulkner (FUNDP), Examiner
Prof. Christophe Schinckus (University of Leicester, UK), Reader
Prof. Ngoc Thanh Nguyen (Wroclaw University of Technology, Poland), Reader

Prof. Philippe Chevalier (UCL), President of the jury

To my grandpa NGO Kiv, you live forever in our hearts.

Acknowledgements

First of all, I would like to express my sincere thanks to my advisor Prof. Manuel
Kolp for having accepted me to work as a teaching and research assistant within the
ISYS research unit. I am very thankful to him for his support throughout my PhD.

Next, I would like to express my deepest gratitude to my co-advisor Prof. Yves
Wautelet for always helping me and giving good advice. I would have been lost
without him.

I also thank the members of my committee, Prof. Jean Vanderdonckt, Prof.
Stéphane Faulkner, Prof. Christophe Schinckus, Prof. Ngoc Thanh Nguyen, and
Prof. Philippe Chevalier for accepting to participate in the jury of this thesis and
contributing with their knowledge and attention.

My appreciation and thanks go as well to my colleagues at the ISYS research
unit at the Louvain School of Management. I especially want to thank Thi Ai Vi
Tran and Kénia Soares Sousa for their friendship.

Many thanks go to my Cambodian friends in Belgium and Netherlands, who
have helped me and have made my life more fun during all these years.

Last but not least, I would like to give very special thanks to my beloved family,
particularly to my parents and husband, for their support, encouragement and,
above all, their love.

Abstract

Enterprise information systems have progressively increased to become large-scaled
and very complex inducing a high development time and cost, hard to manage soft-
ware quality, poor understanding of user requirements leading to high risk when
integrating new technology. As a consequence, there is a growing demand for effi-
cient, manageable and cost-effective software development techniques.

The COTS-based system development (CBSD) approach is one of the solutions
brought by research and industry within this particular context. This approach is
based on the idea of building new systems by selecting appropriate commercial off-
the-shelf (COTS) software components and assembling them within a well-defined
software architecture. The potential benefits of this approach are mainly its reduced
costs and shorter development time, while maintaining quality. However, the use of
COTS software components in software system development presents new challenges
tending to limit their use.

This thesis aims to contribute to the improvement of CBSD by proposing a
methodology that addresses diverse issues related to CBSD. More precisely:

e For the characterization of COTS components, it provides a conceptual model
that can be used by vendors to describe components to be published, and
by users to specify selection criteria for required components and to properly
integrate the selected ones into the system. This conceptual model can also be
used to build a structured repository serving as yellow pages for components
to be found and reused effectively;

e For COTS integration, it provides an architectural pattern for dynamic inte-
gration through the use of a wrapper-based multi-agent system. The origi-
nality of the proposed architecture is issued of its configurability with respect
to the project specific business logic and its flexibility to adapt to the chang-
ing requirements and environment. An implementation model based on the
JADE framework has been realized for validation purpose. This implementa-
tion indeed demonstrates feasibility of the proposed system architecture and
constitutes a guidance for developers;

e For entire life cycle coverage, it provides a business-driven process for CBSD
dealing with business analysis, requirements analysis, COTS evaluation and
selection, and COTS mismatches handling. It leads to build a COTS-based
system that meets the business needs and strategies, and that can be easily
adapted to the business changes. The methodology does not only provide
a high level description of the process but also some practical models and
guidelines for accomplishing the activities defined in the process.

The methodology described on the latest bullet point is called Rationale Incre-
mental and Iterative Process for COTS-Based System Development (RecIProC') and
has been validated on a case study in the field of outbound logistics. In order to sup-
port the methodology application, computer-aided software engineering tools, which
provide the assistance to perform defined activities, have also been developed.

ii

Contents

I

1

11

Introduction

Introduction

1.1 Research Context

1.2 Research Motivation

1.3 Scopeofthe Thesis

1.4 Research Method
1.4.1 Stateofthe Art,
1.4.2 Architectural Design for CBSD
1.4.3 Methodology Definition
1.4.4 Tool Development,

1.5 ReadingMap L

State of the Art

Software Engineering: A Survey of Relevant Approaches
2.1 Software Engineering: a Definition
2.2 Requirements Engineering oL
2.2.1 The i* Framework
2.2.2 The NFR Framework
2.3 System Development Life Cycle Models
2.3.1 The Sequential Model
2.3.2 The V-Model
2.3.3 The Incremental Model
2.4 Object-Oriented Software Engineering
2.4.1 The Unified Modeling Language
2.4.2 The Rational Unified Process
2.5 Agent-Oriented Software Engineering
2.5.1 Benefitsof AOSE
2.5.2 MAS Development Methodologies
2.6 Chapter SUMmMAary o vt vt vt

il

—

© © Ut w W

10
10
11
11

13

CONTENTS

3 Component Based Software Development 37
3.1 COTS Component 37
3.1.1 COTS Definition 37
3.1.2 COTS Component Granularity 38
3.1.2.1 Distributed Component 38

3.1.2.2 Business Component 40

3.1.2.3 System-Level Component 40

3.2 CBSD Life Cycle Models 41
3.2.1 The Sequential Model 41
3.2.2 The V-Model 43
323 The Y-Model 43
3.2.4 The Evolutionary Process for Integrating COTS 45

3.3 COTS Selection Processes 48
3.3.1 Basic Structure of COTS Selection Process 48
3.3.2 Requirements-Driven COTS Selection Approaches 49
3.3.3 Mismatch-Handling Aware COTS Selection 51
3.3.4 Multiple COTS Selection 53
3.3.5 Social-Technical Approach to COTS Evaluation. 54

3.4 COTS Evaluation Strategies 54
3.5 Decision Making Techniques for COTS Selection 55
3.5.1 Weighted Score Method or Weighted Average Sum 55
3.5.2 Analytic Hierarchy Process (AHP) 56
3.5.3 Gap Analysis Approach 58

3.6 Software Project Management for CBSD 60
3.6.1 Effort Estimation Model 60
3.6.2 Quality Management 61
3.6.3 Risk Management 65
3.6.4 Organizational Change Management 69

3.7 Chapter Summary 71

IIT Architectural Design for COTS-Based System Development 73

4 Architectural Foundations 75
4.1 A Characterization for COTS Components 75
4.2 An Ontology for COTS Component Representation 7
4.3 Components Integration: Definition and Characteristics 80
4.4 An Agent-Oriented Approach to Systems Integration 83
4.5 Chapter Summary 84

iv

CONTENTS

5 An Agent-Driven Integration Architecture 85
5.1 Integration Architecture 85
5.1.1 Vertical Architectural Layers and Middleware Composition . 85
51.2 Agent Model 88
5.1.3 MAS Architectural Description 89
5.1.3.1 Social Dimension 90

5.1.3.2 Rationale Dimension 91

5.1.3.3 Communicational Dimension 93

5.1.3.4 Dynamic Dimension 93

5.2 Implementation Model Lo 97
5.2.1 Overview of the JADE Framework 97
5.2.1.1 Agents Creation 98

5.2.1.2 Agent Communication 98

5.2.1.3 Defining Agents’ Capabilities 99

5.2.1.4 Agent Discovery: The Yellow Page Service 100

5.2.1.5 Integrating JADE with a Rule Engine 101

5.2.1.6 Integrating JADE with a Scripting Engine 101

5.2.2 MAS Implementation with JADE 102
5.2.2.1 Connecting GUI and MAS layers 104

5.2.2.2 Gateway Agent Implementation 105

5.2.2.3 Mediator Agent Implementation 108

5.2.2.4 Service provider Agent Implementation 113

5.3 Chapter Summary ot 116

IV ReclProC: Rationale Incremental and Iterative Process for

COTS-Based System Development 117
6 Towards an Agent-Oriented Methodology for CBSD 119
6.1 Weaknesses of Existing CBSD Methods 119
6.1.1 Shortcomings 119

6.1.2 Specifications for RecIProC 120

6.2 Adopting the i* Framework for Our Methodology 120
6.3 Rationale Incremental and Iterative Process for CBSD 124
6.3.1 The Software Process Engineering Meta-Model (SPEM) . . . 124

6.3.2 Process Model 0. 125

6.3.3 Business Analysis Phase oL 126

6.3.3.1 Studying the Business Context 126

6.3.3.2 Defining the Scope of the Project 126

6.3.3.3 Analyzing Strategic Impacts 128

6.3.4 Requirements Analysis Phase 129

CONTENTS

6.3.5
6.3.6
6.3.7
6.3.8
6.3.9

6.3.4.1 Defining the Integrated System Architecture
6.3.4.2 Defining the Functional Requirements of Each Re-
quired System
6.3.4.3 Defining the NFRs of Each Required System
COTS Product Identification Phase
COTS Product Evaluation Phase
Decision Making Phase
COTS Customization Phase
COTS Integration Phase

6.4 Ontology Alignment
6.5 Chapter Summary L

7 Methodology Application
7.1 The TransLogisTIC Project
7.2 RecIProC Application

7.2.1

7.2.2

7.2.3
7.2.4
7.2.5
7.2.6

Business Analysis Phase
7.2.1.1 Studying the Business Context
7.2.1.2 Defining the Scope of the Project
7.2.1.3 Analyzing Strategic Impacts
Requirements Analysis Phase
7.2.2.1 Defining the Integrated System Architecture
7.2.2.2 Defining the Functional Requirements of Each Re-
quired System oL oo
7.2.2.3 Defining the NFRs of Each Required System
COTS Product Identification Phase
COTS Product Evaluation and Decision Making Phases . . .
COTS Customization Phase
COTS Integration Phase

7.3 CASE Tools s

7.3.1

7.3.2
7.3.3
7.3.4

DesCARTES
7.3.1.1 Extension of the i* Editor
7.3.1.2 The BPMN Editor
Hierarchy Graph Modeling
Analyzing the RFP Response
Components Management System

7.4 Chapter SUMMArY v v v vt e e

V Conclusion

8 Conclusion

vi

CONTENTS

8.1 Summary of Contributions 171
8.2 Advantages of the Proposed Architectural Design 174
8.3 Future Work 176
8.4 List of Publications 177
A Epistemological Foundation 193
A.1 Changes in Software Development Methodology 193
A.2 Kuhn’s “paradigm shift” 195
A.3 Lakatos’ “research programme” 197
A.4 CBSD: Paradigm Shift vs Research Programme 198
A5 Conclusion 199
B MAS Implementation with JADE: Source codes 201
B.1 MAS . . e 201
B.1.1 Gateway Agent 201
B.1.2 Mediator Agent 204
B.1.3 Service provider Agent 208

B.2 Supporting Classes 213
B.2.1 A Simple Example of Servlet Connecting to Gateway agent . 213
B.2.2 XMLReader 215
B.2.3 ServiceDB 216
B.2.4 Service. 217
B.2.5 UserRequestDB. 218
B.2.6 Request 219
B.2.7 BookDB 220
B.28 Book. e 222

B3 XML Files. oo 223
B.3.1 UserRequests, 223
B.3.2 Services 223
B.3.3 Books 223

B4 Bean Shell Files. 224

B.4.1 A Simple Example of Bean Shell File for the Mediator Agent 224
B.4.2 A Simple Example of Bean Shell File for a Service provider
Agent 224

C Component Management System: Screenshots 225

vii

CONTENTS

viil

List of Figures

1.1 COTS-based system development process (from [120]). 5
1.2 Custom vs. COTS-based approach (from [37]). 7

2.1 A framework for understanding goal-oriented approaches (from [92]). 18
2.2 Overview of some relevant goal-oriented approaches in RE (from [92]). 19

2.3 An example of Strategic Dependency model adapted (from [170]).. . 20
2.4 An example of Strategic Rational model adapted (from [170]).. . . . 22
2.5 An example of SIG from ([53]). 23
2.6 The sequential model (from [56]). 25
2.7 The V-model adapted (from [70]). 25
2.8 The incremental model (from [56]). 26
2.9 UML diagrams e 29
2.10 The rational unified process (from [102]). 32
3.1 Different levels of component granularity (from [78]). 38
3.2 Example of a distributed component and classes (from [78]). 40
3.3 Example of a system-level component (from [78]).. 41
3.4 The CBSD process model proposed in [152]. 42
3.5 NASA’s CBSD process (from [120]). 42
3.6 The V-model adapted for component-based system development (from

[BO): 44
3.7 The Y-model (from [44]). 45
3.8 EPIC’s spheres of influence (from [4]). 46
3.9 An iteration in EPIC (from [4]). 47
3.10 Overview of the PORE’s iterative process (from [127]). 50
3.11 An overview of the CARE process (from [52]).. 52
3.12 Anexample of AHP. 57
4.1 Example of a system interface provided by a gateway (from [78]). . . 76
4.2 Example of a system interface provided by an interoperability adapter

(from [78]). 7

ix

LIST OF FIGURES

4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
9.5
5.6

5.7
5.8

5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
7.4
7.5
7.6

Example of exporting constrained business component interfaces (from

[T8]). o o e 7
The component meta-model (from [56]). 78
Our component meta-model.o 79
Example of an integrated system (from [78]). 80
Example of a master-slave collaboration (from [78]). 81
Example of a coordinated collaboration (from [78]).. 81
Example of a peer-to-peer collaboration (from [78]). 82
Example of a mixing styles (from [78]).. 83
Vertical system architecture.. 86
Meta-model of the main MAS parts. 87
Agent model. 90
Social dimension of our MAS architecture. 91
Communication diagram for the user request realization. 94
Communication diagram for the interaction between the Service

consumer and Service provider agents. 95
Dynamic diagram of the user request realization. 96
Dynamic diagram of the interaction between the Service consumer

and Service provider agents. 97
Class diagram of our MAS implementation. 103
Some relevant SPEM elements. 125
A RecIProC development cycle. 125
Overview of a RecIProC cycle. 127
An SSD building process. 128
An example of threat/service matrix. 130
An example of opportunity/service matrix. 130
A SD diagram building process. 131
A SR diagram building process. 132
A SIG building process. 133
Local evaluation process. 136
Request for proposal template. 137
The determinants of a feasible COTS solution (from [34]). 139
Conceptual model of the proposed differ mismatch analysis approach. 140
Material flows in the outbound logistics chain. 145
Strategic service diagram for outbound logistics. 148
The opportunities/services matrix. 150
The threats/services matrix. 152
Social dimension of the MAS layer for the outbound logistic system. 153
Strategic dependency diagram modeling Track Transport service. . . 154

LIST OF FIGURES

7.7 Strategic rational diagram modeling Track Transport service. 155
7.8 NFRsofthe TMS. 156
7.9 Realization path of the Select most adequate transport task. 159
7.10 The selected COTS TMS’s scenario for the Select most adequate trans-

port task. Lo 161
7.11 The i* editor in DesCARTES. 163
7.12 The BPMN editor in DesCARTES. 164
7.13 Editing a hierarchy graph. 165
7.14 Instructions for using our RFP template. 165
7.15 A simple example of RFP response analysis result. 166
8.1 Quality analysis of the proposed architectural design. 176
C.1 Edit component in ComMS. L. 225
C.2 Search component in ComMS. 226
C.3 Components search result in ComMS. 226
C.4 Components search result report in ComMS. 226
C.5 View list of components per vendor in ComMS. 227
C.6 List of components grouped by its vendor report in ComMS. 227
C.7 View list of components per domain in ComMS. 228
C.8 List of components grouped by its domain report in ComMS. 228
C.9 View list of components per vendor in ComMS. 229
C.10 List of components grouped by its type report in ComMS. 229
C.11 View list of components per platform in ComMS. 230
C.12 List of components grouped by its platform report in ComMS. . . . 230
C.13 View list of components per programming language in ComMS. . . . 231
C.14 List of components grouped by its programming language report in

ComMS. e 231
C.15 Edit vendor information in ComMS. 232
C.16 List of vendors report in ComMS. 233
C.17 Edit platform information in ComMS 233

X1

LIST OF FIGURES

xii

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.10
3.8

3.9

3.12
3.11

5.1

6.1
6.2

7.1
7.2
7.3
7.4
7.5

Different definitions of COTS (from [121]).. 39
COTS selection evolution (adapted from [116]). 48
An example of WSM/WAS. L. 56
An example of AHP. 58
An example of gap analysis evaluation matrix (from [126]). 59
ISO 9126 quality characteristics (from [81]). 62
Quality model for COTS components (from [23]). 63
The Q'Facto 12 COTS component quality model (from [90]). 63
Quality attributes for COTS components measurable at runtime (from

[23]). . o 66
Quality attributes for COTS components measurable during life cycle

(from [23]). 67
Risks in CBSD (from [29]). 67
C-QM quality model (from [94]). 70
Capabilities of agents. oL 92
Specification of our i* variant. 124
Types of mismatches and recommended actions. 138
The desirability of goals to be fulfilled by TMS. 154
The desirability of global NFRs. 157
TMS products found in the market. 157
Mismatches documentation of the selected COTS TMS. 158
Capabilities relating to the realization path. 160

xiil

Part 1

Introduction

Chapter 1

Introduction

This chapter introduces the whole thesis. We describe, in Section 1.1, the research
context of this thesis. Then, we explain the motivations of our research in Section
1.2. Next, we present the scope of this thesis in Section 1.3; Section 1.4 presents our
research method. Finally, we provide a reading map for the rest of the dissertation
in Section 1.5.

1.1 Research Context

The use of commercial off-the-shelf (COTS) components to develop large-scale infor-
mation systems has become increasingly prominent over the past decade. With such
an approach, there is no need to develop the system from scratch but rather to cus-
tomize COTS components and integrate them into the system. A COTS component
is a commercially available piece of software that other software projects can reuse
and integrate into the system to-be. Due to the commercial potential of software
reuse, the known similarities between the businesses; software packages at disposal
tend to be more generic so that consumers can seek products meeting their require-
ments in a broader area. This gives COTS-based system development a tremendous
amount of interests both in the research community and software industry.

COTS-based system development (CBSD) is based on the idea of building new
systems by selecting appropriate COTS components and assembling them with well-
defined software architecture. It has become a strategic field for building large-scale
and complex systems due to potential benefits that are mainly its reduced costs and
shorter development time, while maintaining quality [36].

Although CBSD approaches promise significant benefits, there are some technical
problems that limit their use. Among those problems, we point out:

e how the business requirements must be captured and refined, based on a pro-
cess that leads to the development of a COTS-based system:;

3

CHAPTER 1. INTRODUCTION

e how to select COTS products that suit best organizational needs;

e how to handle the mismatches between the COTS capabilities and the system
requirements;

e how the different COTS products must be put together and deployed using
the latest technologies;

e how to manage the system upgrading.

In order to deal with such issues, adequate methods and techniques should be
used for conducting the full life cycle of CBSD. Core steps that need to be included
are:

¢ Requirements engineering which is involved with defining the desired ca-
pabilities and constraints, and helps establishing the COTS evaluation criteria;

e COTS evaluation and selection which is involved with evaluating existing
products and selecting the one that best fits requirements;

e COTS customization which is involved with tailoring the selected COTS in
order to cover unsatisfied or partially satisfied requirements;

e COTS integration which is involved with assembling a set of selected COTS
components together to produce a desired system;

e System evolution which is concerned with maintenance issues such as up-
dating the system with new COTS releases, adding new functionality to the
system, and fixing errors.

This thesis aims to contribute to the improvement of CBSD by proposing a
business-driven methodology covering the first four core steps aforementioned; i.e.
requirements engineering, COTS evaluation and selection, COTS customization, and
COTS integration. System evolution is out of the scope of this thesis. The method-
ology is indeed intended for the development of IT solutions with the use of COTS
components that satisfy business requirements. This is achieved by establishing a de-
velopment process that starts with business analysis phase in order to identify busi-
ness needs, to define I'T solutions to business problems, and to study the long-term
strategic impacts of adopting the IT solutions. The result of the business analysis
serves as the basis for the following phases of the development process. In addition,
our methodology proposes a flexible system architecture allowing I'T systems to be
easily adapted to the business changes. The motivations of our work are described
into the next section. It notably argues that software development methodologies
for the custom system development are not entirely suitable for CBSD, and justi-
fies the benefits of using the methodologies proposed in the agent-oriented software
engineering for developing COTS-based systems.

4

1.2. RESEARCH MOTIVATION

1.2 Research Motivation

As illustrated in Figure 1.1, [120] identifies the specific activities of CBSD when com-
pared to classical “from scratch” development. As evoked in [120], some of these
activities are new, having no counterpart in traditional custom system development
processes. Others are similar, yet the use of COTS components in the system de-
velopment brings some pervasive changes to them. For instance, the requirements
engineering of custom software development is essentially straightforward by de-
scribing a desired system through a set of specified functionalities and qualities that
the system must meet. However, requirements engineering is very different when
acquiring COTS-based systems since at least some software requirements must be
flexible enough to accommodate the fluctuations of the commercial marketplace. In
such cases, either the requirements will be adapted to the existing components or
the developers will develop the software components in-house.

Requirement Design Coding Integration
n &) $ COTS Glueware and Glueware and
= "'5 = | | identification, integration integration Integration
0O o E evaluation requirements requirements and test
© % & | \and selection coding

Target

| |
| |
| |
| |
: analysis :
I I
| |
| |
| |
| |

. system
Requirements Non-COTS Non-COTS inszallation
analysis design coding and
acceptance

Requlrements
check

test

Deﬁgn
check

Figure 1.1: COTS-based system development process (from [120]).

Following [120], the activities that are specific to CBSD include COTS com-
ponents identification, evaluation and selection at the requirement stage, glueware
design and integration requirements analysis at the design stage, and glueware and
integration requirements coding at the coding stage (see Figure 1.1). Indeed, after
defining the system requirements, the system builders identify the products available
in the marketplace that can be used to build the system. A set of components are
preselected to be examined more closely in order to determine a few viable candidate
products. The trade-off analysis between competing candidates will be done in term
of technical and economical factors before making the selection decision. However,
COTS components even the best-fitting ones will rarely perfectly meet system re-
quirements. The project stakeholders will need to tailor the selected components
in order to cover unsatisfied or partially satisfied requirements. These components
will be then assembled together to build the desired system. Assembling COTS

CHAPTER 1. INTRODUCTION

components also presents unique difficulties because these COTS components are
seldom built to plug into each other easily. The common technique to overcome
this deficiency and to build an integrated system out of incompatible COTS compo-
nents involves the development of glueware. Glueware is a type of software that can
be used to “glue” or integrate software components to form a seamless integrated
system.

Moreover, system maintenance and evolution are also very different when COTS
components are used to build the system. Upgrading a COTS-based system means
that there are new releases of COTS components used in the system. A system with
several COTS components thus has a very heavy dependence on various release
cycles of the COTS vendors. Upgrading a particular COTS component can result
in several inconsistencies and expensive redesign of the system. Hence, the system
architecture must be flexible and facilitate the components’ substitution.

From an engineering point of view, custom system development is an act of cre-
ation. It starts by defining system requirements and creates a system that meets
them. On the other hand, CBSD starts by defining a general set of requirements
and then explores existing COTS components to see how they match the require-
ments. The best-matching components will be selected and customized if necessary
before integrating them into the system under development. As depicted in the left
of Figure 1.2, a custom system development approach involves specifying system
requirements, defining architectural constraints, and undertaking system implemen-
tation. This approach is not applicable to CBSD because the marketplace would
not likely yield any products that perfectly meet the requirements and
architectural constraints of the system under development. Instead, with
COTS-based systems, project teams must consider requirements, architecture and
marketplace simultaneously, as depicted in the right of Figure 1.2. Any of the
three circles might affect the other two, so none can proceed without knowledge
and accommodation of the others. These arguments highlight that the process and
activities of CBSD are different from those of custom development.

Based on these arguments, existing software development methodologies (SDMs)
for custom system development must be adapted for CBSD [3]. As stated in [142],
among the SDMs proposed in the literature, the SDMs inspired by system archi-
tectures and implementation rather than by organizational and enterprise ones lead
to misunderstanding between business stakeholders and software developers. These
misunderstandings result in failures to correctly implement requirements and mis-
matches between organizational needs and system modules that should automate
them. These failures and mismatches are particularly sensitive when concerning
large-scale information system development based on the use of COTS components.
It is due to intrinsic organizational nature of large-scale information systems and
the COTS component source codes are most often not available to the system devel-
opers. Therefore, SDMs that do not provide organizational and business

6

1.3. SCOPE OF THE THESIS

modeling phases and social-based design patterns fail to provide sufficient
support to development of COTS-based large-scale information systems.

The agent-oriented software engineering (AOSE) that has emerged in recent
years has contaminated positively information systems analysis and design processes
[87]. The SDMs proposed in the AOSE research fields have contributed to reduce
the mismatch between organizational requirements and systems design [97] that
is strategic in COTS-based large-scale information system development projects.
These SDMs offer modeling tools based on organizational and social concepts (ac-
tors, agents, goals, objectives, responsibilities, social dependencies, process, qualities,
etc.) as fundamentals to conceive information systems [77]. This makes AOSE
distinct from any other software engineering paradigm. The idea of modeling an
information system in terms of autonomous entities with characteristics similar to
human organizations introduces a close-to-real life system modeling, and therefore
makes the system developments natural.

Based on these observations, the aim of our research is to build, apply and
validate an original methodology, which is based on the SDMs proposed in the
AOSE, for developing COTS-based system in the most efficient manner possible.
An epistemological foundation of our work is presented in the appendix A.

Custom development Required COTS approach
approach

Acrchitecture and design

i Marketpl
Implementation arketplace

Figure 1.2: Custom vs. COTS-based approach (from [37]).

Requirements

Simultaneous
definition and
trade-offs

Architecture and

1.3 Scope of the Thesis

Before defining and validating our methodology, it is important to define the scope
of our PhD research. Literature review reveals that numbers of researchers have
identified the existence of different types of COTS-based systems, and have pointed
out that the processes and activities involved to be followed in developing each type
of system are largely different [29]. In order to clarify the scope of this thesis, it is
essential to specify the category of COTS-based systems that we are focusing on.

7

CHAPTER 1. INTRODUCTION

The authors of [46] and [29] have classified COTS-based systems into three major
categories, depending on the number of COTS products used to build the system:

e Turnkey systems are built around one or suite of COTS products that meet

most of the desired functionalities. A turnkey system may be customized (e.g.
through parameter adjustments) to better meet user’s needs. For instance,
Microsoft Office [1] is a turnkey system;

Intermediate systems are built around one COTS product, and may further
integrate customized elements, either developed in-house or acquired from a
third party. The central COTS product dominates the system, and the amount
of customization varies as needed. For instance, mySAP ERP [2] is an inter-
mediate system;

COTS-intensive systems (the focus of this thesis) are built by integrat-
ing several products or components, either from a third party or developed
in-house. None of them dominates the system, but all are equally impor-
tant. Such systems usually include glue-coding, i.e., writing custom code to
facilitate communication between different system pieces. For instance, an
e-collaboration system that is composed of an Enterprise Resource Planning
(ERP), a Customer Relationship Management (CRM) and a Supply Chain
Management (SCM).

The existence of these defined types of COTS-based systems induces that there
are three main alternatives for building up a large-scale distributed business system

[78]:

1.

Buy the whole system from a software vendor that provides all the functionality
required;

Custom-build the system;

Buy a set of systems from multiple vendors, often with the objective of choosing
the best-of-breed and integrate them together.

Given the unlikelihood of any single software vendor being able to meet all re-
quirements, and given the cost of building a large-scale system from scratch, the
third alternative is currently receiving a tremendous push toward becoming the only
effective reality. This motivates us to focus our work on this approach of system
development (i.e. COTS-intensive system development). We aim to addresses the
issues associated with the development of such a system. More precisely, we propose
a methodology for developing large-scale distributed business systems with the use of
COTS components. This methodology covers the four first steps of the CBSD life
cycle including Requirements engineering, COTS selection, COTS customization,
and COTS integration.

1.4. RESEARCH METHOD

This methodology provides a business-driven process for CBSD, an integration
architectural model, and a CASE-Tool for supporting the methodology. As evoked
earlier, this methodology is based on the SDMs proposed in the AOSE in order
to reduce the mismatches between organizational requirements and systems design.
More specifically:

e we propose using the requirements engineering frameworks proposed in the
AOSE (i.e. i* [170] and NFR [53] frameworks) for analyzing the business
needs and system requirements;

e we propose an agent-oriented approach for further analyzing the mismatches
between the COTS features and the system requirements;

e we provide a generic multi-agent system (MAS) architecture modeling different
software agents used for coordinating different COTS components to build the
large-scale system under development;

e we have developed the proposed MAS using the JADE framework [20]. This
constitutes an implementation model for developers.

1.4 Research Method

There are four main parts in the construction of this thesis, each of them was
based on a different research method and approach. This sections summarizes these
contributions and the approaches followed to build-up each of them, more precisely:

e The first part involved a literature study of the relevant approaches and tech-
niques;

e The second part focused on defining key elements necessary and software ar-
chitecture required to build up a methodology;

e The third part focused on building-up the methodology upon the defined con-
cepts and architecture for full life cycle coverage;

e Finally, the fourth part consisted in the development of CASE tools for method-
ology support.
1.4.1 State of the Art

To successfully achieve this part, we proceeded to a review of scientific sources related
to our main topics of interest. We indeed focused on research works related to CBSD,
SDMs for custom system development, and requirements engineering frameworks.

9

CHAPTER 1. INTRODUCTION

We have found that there are many research works related to CBSD addressing
diverse aspects of it (e.g. COTS selection, COTS integration, risk management,
quality management, etc.). Nevertheless, there is a lack of established methodolo-
gies that cover the full life cycle of CBSD including Requirements engineering, COTS
evaluation and selection, COTS customization, COTS integration and System evo-
lution. In order to contribute to the improvement of CBSD, we aim to define an
original methodology that covers the first four phases of the CBSD life cycle.

1.4.2 Architectural Design for CBSD

Based on the key elements composing COTS-components found in literature during
the first part, we have build-up a custom ontology where syntax, semantic and
linking of each relevant concept are depicted. We made use of a UML class diagram
to accurately represent the concepts and their relationships.

Besides building up the ontology, we have defined a system architecture centered
on agents for COTS integration. Indeed, through the literature review on COTS
integration, we found that there is a lack of frameworks for integrating different
components that can support frequent upgrades of COTS components. The archi-
tecture has been built by combining abilities of agent-technology with requirements
for dynamic COTS allocation at runtime.

1.4.3 Methodology Definition

Rationale Incremental and Iterative Process for COTS-Based System Development
(RecIProC) has been defined by analyzing existing research works related to the
main objective of this thesis. We have firstly defined the conceptual foundations of
our methodology by:

e studying the different types of COTS-based system development (i.e. Turnkey
systems, Intermediate systems, and COTS-intensive systems) and specifying
the focus of the methodology (i.e. COTS-intensive systems);

e aligning the methodology with organizational models for business-driven de-
velopment;

Then, we have reviewed existing SDMs for custom system development and
research works related to CBSD in order to define an adequate development process
for CBSD. The approaches, methods, and techniques found in the literature have
been analyzed and the most solid and widespread ones have been incorporated in
order to appropriately construct our process.

RecIProC has been validated on a case study issued of the TransLogisTIC project
(see [160] for an exhaustive description). It is an ambitious research project financed
by the Walloon Region which is built around a long-term strategy aimed at devel-
oping a complete and efficient multi-modal transport system in Wallonia.

10

1.5. READING MAP

1.4.4 Tool Development

This part consisted in the development of Computer-Aided Software Engineering
(CASE) tools providing the assistance to perform activities that we have defined in
RecIProC. This includes:

e developing a component management system for managing components’ infor-
mation;

e defining a request for proposal (RFP) template;

e developing a VBA program in Ms Excel for analyzing the RFP answers from
vendors;

e developing a business process modeling notation (BPMN) editor and adding
it into DesCARTES, a previously developed CASE tool by our research unit
(see [147, 171]). DesCARTES offers a set of functionalities that can be used
for performing some activities of our methodology (e.g. the i* editor and the
NFR editor);

e developing a hierarchy graph editor and a RFP generator from a hierarchy
graph;

e developing the proposed MAS architecture for COTS integration using the
JADE plateform.

1.5 Reading Map

This thesis is organized in the following chapters:

e Part I: Introduction has presented the research context, main motivations,
scope of this thesis, and research method;

e Part II: State of the Art presents the state of the art related to our research
context. Chapter 2 provides a survey of relevant approaches in software engi-
neering field. Chapter 3 reviews the relevant research works on CBSD found
in the literature;

e Part III: Architectural Design for COTS-Based System Develop-
ment presents the proposed architectural design for dynamic COTS inte-
gration through the use of a wrapper-based multi-agent system. Chapter 4
presents the conceptual foundations of our architectural design. Chapter 5
presents the MAS architecture for COTS integration as well as an implemen-
tation model of the proposed MAS using JADE;

11

CHAPTER 1. INTRODUCTION

e Part IV: RecIProC: Rationale Incremental and Iterative Process
for COTS-Based System Development presents the proposed method-
ology for CBSD. Chapter 6 provides a description of RecIProC according to
the specifications for RecIProC that we have defined with respects to the
weaknesses of existing methods. Chapter 7 introduces an application of our
methodology on a case study and CASE tools that we have developed to sup-
port our methodology;

e Part V: Conclusion concludes this research work by presenting the major
contributions and proposing future works.

12

Part 11

State of the Art

13

Chapter 2

Software Engineering: A Survey
of Relevant Approaches

This chapter presents the state of the art in the Software Engineering (SE). It
focuses on the relevant approaches to our research context. Section 2.1 presents
different definition of SE and specifies the one that best matches our work. Section
2.2 overviews relevant requirements engineering frameworks to be used within our
methodology. Section 2.3 introduces some representative software development life
cycle models. Section 2.4 exposes the Object-Oriented Software Engineering (OOSE)
which has been the most widely-used in the development of information systems.
Section 2.5 describes the Agent-Oriented Software Engineering (AOSE) which is one
of the most recent contributions to the field of software engineering.

2.1 Software Engineering: a Definition

The term Software Engineering (SE) was first introduced in 1968 during a NATO
conference in Germany. It was defined as “the establishment and use of sound engi-
neering principles in order to obtain economically software that is reliable and works
efficiently on real machines” [125]. Since, SE appeared under many definitions
in literature. [111] defined it as “the establishment and use of sound engineering
principles and good management practice, and the evolution of applicable tools and
methods and their use as appropriate, in order to obtain — within known and ade-
quate resource provisions — software that is of high quality in an explicitly defined
sense”. Later, it was defined in [134] as “the use of our knowledge of computers and
computing to help solve problems” .

The generic definition that best matches the work of this thesis is “SE is an
engineering approach to the software systems development that provides methodolo-
gies, tools and techniques to help software system developers in the analysis, design,

15

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

implementation and testing of software system.”, as defined by [124].

2.2 Requirements Engineering

SE usually begins with the identification of relevant requirements, so that in custom
system development, the requirements engineering (RE) mainly consists of eliciting
stakeholders’ needs, refining the acquired goals into non-conflicting requirements
statements and finally validating these requirements with stakeholders. The spec-
ified requirements will be translated into a software architecture and eventually
implemented. Broadly speaking, requirements play a controlling role in a custom
system development [7].

On the other hand, in CBSD, the requirements cannot neglect the availability
of COTS products on the market, in the sense that some requirements may not be
provided by the available COTS products. This leads to requirements adaptation
taking into account the knowledge of the existing market acquired little by little.
Therefore, requirements statements need to be much more flexible and less specific
in order to support these adaptations [9]. In other words, requirements should be
specified as desirable needs rather than as strict constraints. For instance, suppose
that performance is a critical requirement for a database system but none of the
evaluated products satisfies the desired response time. This is a typical situation to
deal with the buy versus build decision. If the final resolution is buying a product,
customers must accept product limitations and requirements that cannot be met by
any available COTS products.

Due to the crucial role that RE plays in the software development life cycle, we
have reviewed existing RE approach, methods and techniques in order to select the
most appropriate to support our methodology. We found that the notion of goal has
been increasingly used in requirements engineering methods and techniques. [172]
explains why goals are useful in RE by providing a comprehensive attempt at under-
standing and clarifying the roles of goals across the different areas of RE including
Requirement acquisition, Relating requirements to organizational and business con-
text, Clarifying requirements, Dealing with conflicts, Driving design, and other RE
tasks.

By definition, goals are the objectives and targets of achievement for a system.
Goal-oriented requirements engineering (GORE) takes the view that requirements
should initially focus on the why and how questions rather than on the question of
what needs to be implemented. Traditional analysis and design methods focused on
the functionality of the system to be built and its interactions with users. Instead of
asking what the system needs to do, GORE methods ask why a certain functionality
is needed and how it can be implemented. Therefore, goal-oriented methods give
a rationale for system functionality by answering why a certain functionality is
needed while also tracking different implementation alternatives and the criteria for

16

2.2. REQUIREMENTS ENGINEERING

the selection among these alternatives.

As stated in [12], by focusing on goals instead of specific requirements, analysts
enable stakeholders to communicate using a language based on concepts (e.g. goals)
with which they are both comfortable and familiar. Moreover, since enterprise goals
and system goals are typically more stable than the requirements, they are a bene-
ficial source for requirements derivation.

In addition, GORE allows requirements to be represented at different levels of
abstraction [155]. This provides a systematic process for refining high-level require-
ments into objectively measurable sub-requirements that can be matched with the
COTS component features.

Based on these reasons, we propose to use GORE frameworks in our methodol-
ogy to adequately define the requirements for guiding the COTS selection. Various
GORE methods have been proposed. [92] compares fifteen different goal-oriented ap-
proaches based on a common framework for understanding goal-oriented approaches.
As depicted in Figure 2.1, this framework is composed of four views:

e The usage view concerns the objectives of using goal modeling in RE;
e The subject view looks at the notion of a goal and its nature;

e The representation view concerns the way goals are expressed. Goals can be
expressed in a variety of formats, using more or less formally defined nota-
tions. The authors differentiate between informal, semi-formal and formal ap-
proaches. Informal approaches generally use natural language text to express
goals; semi-formal use mostly box and arrow diagrams; finally, in formal ap-
proaches goals are expressed as logical assertions in some formal specification
language;

e The development view concerns the way that goal models are generated, and
evolve. This view considers the dynamic aspects of goal driven approaches,
i.e. the proposed way-of-working and the tool support provided for enacting
this way-of-working.

Based on this framework, we have defined the criteria to select goal-oriented
approaches to support our methodology as follows:

e We need goal-oriented approaches that can be used to understand the existing
organizational situation and to describe how business goals relate to functional
and non-functional system components;

e On the representation perspective, we prefer goal-oriented approaches wherein
goals are expressed in formal approach;

17

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

e On the development perspective, we prefer goal-oriented approaches that pro-
vide guideline and tool support for constructing goal models.

Overview of the different goal-oriented approaches illustrated in Figure 2.2 helps
us to understand and accordingly select the goal-oriented approaches that meet the
criteria mentioned above. Two goal-oriented approaches were chosen to support our
methodology: the i* modeling framework and NFR framework. These frameworks
are described in the following sections.

What does goal modelling achieve?

Usage

How are goals expressed? What is the nature of goals?

Representation |(e Subject
approach ——

Development

How are goal models developed and used?

Figure 2.1: A framework for understanding goal-oriented approaches (from [92]).

2.2.1 The i* Framework

The i* framework is a goal-oriented and agent-oriented modelling framework pro-
posed by Eric Yu [170]. It was originally developed to model information systems,
and more particularly the dependencies between human and technological actors. It
is composed of two types of models, each one corresponding to a different abstraction
level: the Strategic Dependency (SD) and Strategic Rationale (SR) models.

A SD model represents the intentional level of a system. It consists of a set of
actors (e.g. human or software system) and their dependencies including Resource
dependency, Task dependency, Goal dependency, and Softgoal dependency.

e In a Resource dependency, one actor (the depender) depends on the other
(the dependee) for the availability of an entity (physical or informational). By
establishing this dependency, the depender gains the ability to use the entity
as a resource. At the same time, the depender becomes vulnerable if the entity
turns out to be unavailable;

e In a Task dependency, the depender depends on the dependee to carry out
an activity. Tasks represent functional activities agents perform;

18

2.2. REQUIREMENTS ENGINEERING

Goal-Oriented Approaches

Framewor k
Components

Understand current
org. situation
Understand the
need for change
Provide the
d(_ellperatl on context sl
within which RE
occurs

Relate business
goals to system VIV v |V
components
Evaluate system
specs. Against v |V
stakeholder goals

IThe reasoning loop model
Goal-Scenario Coupling
NFR Framework

M odel)
X\ |Goal-Based Workflow

F3(OM)

SAC

SIBYL

REMAP

KAOS

GBRAM

GSN

GQM

X\ [Cognitive Task Analysis
< [I* (Strategic Dependency

<\ [EKD

AN
AN

Usage

Enterprise goals v v v |V vivi|v |v

Process goals Viviv|v |V

Subject

Evaluation goals v |V

Formal v v |V v

Semi-formal 4 v |V |V ViV v |V v |V

Informal v

Representation

Way-of-working . . . ¢ e | .

5}
IS
Q.
(=]
No)
g | Tool support
o

[CRRC]
=| =

MG
MG
MF
M

MG

LL
=S| =2 | =22

= deal with theissue
suggest a number of steps and associated strategies
support for model construction, F = formal reasoning support, G = process guidance

4
¢
M

Figure 2.2: Overview of some relevant goal-oriented approaches in RE (from [92]).

e In a Goal dependency, the depender depends on the dependee to bring about
a certain state in the world. The dependee is free to do any tasks necessary to

19

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

achieve the goal;

e In a Softgoal dependency, the depender depends on the dependee to perform
some task that meets a softgoal. Softgoals represent non-functional require-
ments; they are thus not directly implemented but do have an influence on the
way functional requirements are responded to.

In Figure 2.3, we show an example of the SD model for Meeting Scheduling, with-
out computer-based scheduler support, adapted from [170]. There are two human
actors in the model: the Meeting initiator and the Meeting participant. The Meeting
initiator depends on the Meeting participant for the goal Attend meeting. In order
to schedule the meeting, the Meeting initiator depends on the Meeting participant
for the tasks Send exclusion dates and Send preference dates. These two elements
are modelled as tasks because the Meeting initiator, as a depender, has made some
decision on how the dates have to be sent (i.e. the dates have to be sent in certain
format and belong within a certain data range). Once the dates are analysed, the
Meeting participant depends on the Meeting initiator for the resource Proposed date.
This element is modelled as a resource, because it is an informational entity. Finally,
the Meeting initiator depends on the Meeting participant for the softgoal Agreement
achieved promptly. It is important to note that promptly is relative to the criteria
of the Meeting initiator and cannot be sharply defined.

Attend
meeting
Send exclusion
dates
end preference
dates

Meeting Meeting

initiator participant
Proposed
date
Legend:
El : Dependenc
Actor Resource Goal Task Softgoal pIink Y

Figure 2.3: An example of Strategic Dependency model adapted (from [170]).

A SR model represents the rationale revel of a system. It allows visualizing the
intentional elements into the boundary of an actor in order to refine the SD model
to add reasoning ability. The dependencies of the SD model are linked to intentional

20

2.2. REQUIREMENTS ENGINEERING

elements inside the actor boundary. The elements in the SR model are decomposed
accordingly to the following links:

e Means-end links indicate a relationship between an end, and a means for
attaining it. The “means” is expressed in the form of a task and with the
“end” is expressed as a goal. In the graphical notation, the arrowhead points
from the means to the end;

e Contribution links correspond to means-end links where the end is a soft-
goal, which allows stating explicitly if the contribution is negative or positive

(+7‘);

e Task-decomposition links state the decomposition of a task into different
intentional elements (i.e., goal, task, resource and softgoal). There is a relation
AND when a task is decomposed.

In Figure 2.4, we present an example of the SR model refined from the SD dia-
gram depicted in Figure 2.3. We can see that the strategic dependencies are linked
to the intentional elements. In Figure 2.4, we observe that the Meeting initiator
has as a main task to Organize the meeting. This task is decomposed with a task-
decomposition link into a goal Meeting to be scheduled, and two softgoals Quick and
Low effort. The goal Meeting to be scheduled is the end to achieve by the task Sched-
ule meeting and so, they are related with a means-end link. Likewise, the Meeting
participant has the task Find agreeable date, which is decomposed into the task
Agree to date. These two tasks contribute negatively to the softgoal User friendly
and Minimum interruption of the Meeting participant, respectively. Nevertheless,
if these two softgoals are achieved, they contribute positively to the softgoal Low
effort for arranging the meeting.

2.2.2 The NFR Framework

The Non-Functional Requirements (NFR) framework is a goal-oriented approach
proposed in [53] for addressing non-functional requirements (NFRs). The main
objective of the NFR framework is to represent, organize and analyse NFRs. It
is goal-oriented since it treats NFRs as goals to be achieved. However, it remains
different from the traditional goal-oriented approach as presented in [57] [12] since
the framework uses the notion of softgoal which represents a goal that has no clear-
cut criteria to determine whether they have been satisfied or not. In [53], Chung
et al. use the term to satisfice to indicate that the goal satisfying is accomplished
within acceptable limits. Therefore, a softgoal is considered satisficed when there is
sufficient positive evidence and little negative evidence against it.
The NFR framework is established with the following key concepts:

21

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

Meeting
initiator

Meeting
participant

Attend
meeting

Send exclusion

Obtain
available

Agreeaple
slot to be
found

Find
agreeable
date

Proposed
date

Merge
available
dates

Agreement
achieved promptl

Legend: / O
Dependency Mean-end c(m{rbution Decomposition . i
Actor Resource Goal Task Softgoal link ik link link Actor boundary

Figure 2.4: An example of Strategic Rational model adapted (from [170]).

e Softgoal is the basic unit for representing NFRs. There are three kinds of

softgoals:

— The NFR softgoals represent high-level non-functional requirements to
be satisficed. The NFR softgoals have the following nomenclature: Type
[Topicl, Topic2, ...J, where Type is a non-functional aspect (e.g. Security
and Topic is a subject of the target system to which the softgoal is associ-
ated (e.g. Accounts). Topics can be further decomposed into attributes,
indicated by a “.” following the topic description (e.g. Accounts.balance);

— Operationalizing softgoals are possible solutions (operations, processes,
data representations, etc.) or design alternatives which help to achieve

the NFR softgoal;

— Lastly, claim softgoals justify the rationale and explain the context for a

softgoal or interdependency link.

e Interdependencies indicate refinements of softgoals and the contributions of
offspring softgoals toward the achievement of their parents. There are basically
two types of contributions describing how the offspring contributes to satisfice
its parent. The first one decomposes a softgoal into a set of sub-goals through

22

2.2. REQUIREMENTS ENGINEERING

the use of AND/OR contributions. AND describes the relationship in which
all the refined sub-goals must be met for the goal to be met. OR defines the re-
lationship that at least one of the refined sub-goals must be met for the goal to
be met. The other type of contribution relates one softgoal to another with the
following values: BREAK(“ -”), HURT(“”), UNKNOW(“?”), HELP(“+”)
and MAKE(“++");

Softgoal Interdependency Graph (SIG) is the graph where softgoals and
their interdependencies are represented. Figure 2.5 shows an example of a SIG
adapted from [53];

Catalogues group an organized body of design knowledge about NFRs types,
development techniques and correlations among operationalizing and NFR
softgoals that can be used in different application domains to compose the

SIG.

Secure User firendly

Good performance [Accounts] access [Accounts]
[Accounts]

[Accounts] [Accounts] AN Confidentiality Availability

Use uncompressed Use indexing
format [Accounts] [Accounts]

GO D Integrity C/
Response time ACCOU”tS]

\ [Accounts] [Accounts]

5
@ @ “_ Completeness | Accuracy +T Authorize access to
N [Accounts] [Accounts] information [Accounts] Authenticate
A

user access

v

Claim [Optimized

validation will not hurt ~ Validate access Identify users Use PIN Require
response time too much] ~ against eligibility Compare additional ID
rules signature
Legend: ¢y NFRgoal ! Critical
/U\ — Implicity Y Accepted
(e} Operationalizing goal /5\ X Rejected
) AND OR -—--- Explicity - Hurtcontribution

"% Claim

decomposition decomposition + Help contribution

Figure 2.5: An example of SIG from ([53]).

23

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

2.3 System Development Life Cycle Models

According to [142], a System Development Life Cycle (SDLC) is “a conceptual model
used in project management to describe the stages involved in a system development
project from an initial feasibility study through maintenance of the completed appli-
cation”. Several SDLCs have been proposed over the years. The different SDLCs
are all based on the same activities — Analysis, Design, Implementation, Integration
and Test — and vary only in the way they are performed. In the section, we will
overview different SDLCs.

2.3.1 The Sequential Model

The sequential model (e.g. a waterfall model) follows a systematic, sequential ap-
proach that begins at the system level and progresses successively from analysis to
settlement. Each activity is regarded as concluded before the next activity begins.
The output from one activity is the input to the next.

This model, represented in Figure 2.6, is the oldest project life cycle model in
the software engineering history [56]. Nevertheless, there are some problems when
applying this approach to software development.

e [t is based on the assumption that it is possible to define and describe all system
requirements and software features beforehand, or at least very early in the
development process. However, many major problems in software engineering
arise from the fact that it is difficult for the customer to state all requirements
explicitly;

e [t is difficult to add or change requirements during the development because,
once performed, activities are regarded as completed. In practice, requirements
will change and new features will be called for and a purely sequential approach
to software development can be difficult and in many cases inadequate;

e Another problem of this approach is the late response to the customer. A
working version of the software will not be available until late in the system
development process and a major misunderstanding, if undetected until the
working program is reviewed, can be disastrous.

Despite its disadvantages, the sequential model has an important place in soft-
ware engineering. It constitutes the first attempt to build a framework for the proper
incorporation of the software development activities. In practice, it is still in use
today but it is never used in its pure form. For example, the waterfall model in
combination with prototyping, or the V-model, has been widely used for entire life
cycles or as a part of other models, covering particular phases of the entire process
model [133].

24

2.3. SYSTEM DEVELOPMENT LIFE CYCLE MODELS

Analysis T
Design ‘l
Implementation ‘l
Integration 7

Test

Figure 2.6: The sequential model (from [56]).

2.3.2 The V-Model

The V-model is a software development model which can be considered as an ex-
tension of the waterfall model. Instead of moving down in a linear way, the process
steps are bent upwards after the coding phase, to form the typical V shape (see
Figure 2.7). The main advance of this model is that it supports development with
testing. It demonstrates the relationships between each phase of development and
its associated phase of testing.

Requirements | Acceptance
analysis testing
System |] System
design testing
Architecture | | Integration
design testing
Detaﬂed ————— Unit testing
design
Coding

Figure 2.7: The V-model adapted (from [70]).

2.3.3 The Incremental Model

The incremental model combines elements of the sequential model with the iterative
approach. Figure 2.8 shows, the incremental model applies the sequential model in

25

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

stages as calendar time progresses. Each sequence produces a deliverable “incre-
ment” of the software with new functionality added to the system [113].

When the incremental model is used, the first increment is often the core of the
software system [140]. At this stage, the basic requirements are addressed but many
supplementary features remain undelivered. As a result of the evaluation of the
core software, a plan is developed for the next increment. The plan proposes the
modification of the core software to satisfy requirements more effectively and the
delivery of additional functionalities. This process is repeated following the delivery
of each increment, until the complete software system has been developed.

The incremental model is useful for handling changes in requirements. Early
increments can be implemented to satisfy current requirements and new and altered
requirements can be addressed in later increments. If the core software is well
received, the next increment can be added according to the plan. Increments can
also be planned to manage technical risks.

Increment 1,2...n

Analysis ‘l

Design

Development

Implementation ‘l
Integration ‘l

Test

Figure 2.8: The incremental model (from [56]).

2.4 Object-Oriented Software Engineering

Object-Oriented Programming (OOP) has been the most widely-used programming
paradigm in the development of information systems. It is claimed that the problem-
solving techniques used in object-oriented programming more closely models the way
humans solve day-to-day problems [38]. Following [38], in the older styles of pro-
gramming, a programmer who is faced with some problem must identify a computing
task that needs to be performed in order to solve the problem. Programming then
consists of finding a sequence of instructions that will accomplish that task. But at
the heart of OOP, instead of tasks we find objects - entities that have behaviors, that
hold information, and that can interact with one another. Programming consists
of designing a set of objects that model the problem at hand. Software objects in

26

2.4. OBJECT-ORIENTED SOFTWARE ENGINEERING

the program can represent real or abstract entities in the problem domain. This is
supposed to make the design of the program more natural and hence easier to get
right and easier to understand.

Object-Oriented Software Engineering (OOSE) is a software design technique
that is used in software design in OOP. OOSE is developed by Ivar Jacobson in
1992 [85]. It is made of a modeling language and a software development process.
According to [14], the concepts and notation from OOSE have been incorporated
into the Unified Modeling Language (UML); and the software development process
of OOSE has evolved into the Rational Unified Process (RUP).

2.4.1 The Unified Modeling Language

The Unified Modeling Language (UML) [151] is a standardized modeling language
in the field of object-oriented software engineering. UML is used to specify, visu-
alize, modify, construct and document the artifacts of an object-oriented software-
intensive system under development. It offers a standard way to visualize a system’s
architectural blueprints, including elements such as activities, actors, business pro-
cesses, database schema, (logical) components, programming language statements,
and reusable software components.

UML has been normalized by the Object Management Group (OMG) in order
to furnish a universal communication support because it is independent from ap-
plication domain and programming languages. It is issued from the merging of the
Booch(OOT) [35], Rumbaugh (OMT) [143] and Jacobson (OOSE) [85]. UML has
significantly matured since its version 1.1. Several minor revisions (UML 1.3, 1.4,
and 1.5) fixed shortcomings and bugs with the first version of UML, followed by the
UML 2.0 major revision, which was adopted by the OMG in that was adopted by
the OMG in 2005.

UML 2.0 has 13 types of diagrams that can be used to model the system in
multiple views as well as multiple levels of abstraction. These diagrams are grouped
into two categories (see Figure 2.9).

e Structure diagrams: emphasize the things that must be presented in the
system being modeled. They are used to document the software architecture.
Structure diagrams encompass:

— Class diagram: describes the structure of a system by showing the
system’s classes, their attributes, and the relationships among the classes;

— Component diagram: describes how a software system is split up into
components and shows the dependencies among these components;

— Composite structure diagram: describes the internal structure of a
class and the collaborations that this structure makes possible;

27

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

Deployment diagram: describes the hardware used in system imple-
mentations and the execution environments and artifacts deployed on the
hardware;

Object diagram: shows a complete or partial view of the structure of
an example modeled system at a specific time;

Package diagram: describes how a system is split up into logical group-
ings by showing the dependencies among these groupings.

e Behavior diagrams: emphasize what must happen in the system being mod-

eled.

Since behavior diagrams illustrate the behavior of a system, they are

used extensively to describe the functionality of software systems. Structure
diagrams encompass:

Activity diagram: describes the business and operational step-by-step
work-flows of components in a system. An activity diagram shows the
overall flow of control;

State machine diagram: describes the states and state transitions of
the system;

Use case diagram: describes the functionality provided by a system in
terms of actors, their goals represented as use cases, and any dependencies
among those use cases.

Interaction diagram: is a subset of behavior diagrams and empha-
sizes the flow of control and data among the things in the system being
modeled. Interaction diagrams include:

*+ Communication diagram: shows the interactions between objects
or parts in terms of sequenced messages. They represent a com-
bination of information taken from Class, Sequence, and Use Case
Diagrams describing both the static structure and dynamic behavior
of a system;

* Interaction overview diagram: provides an overview in which the
nodes represent communication diagrams;

* Sequence diagram: shows how objects communicate with each
other in terms of a sequence of messages. Also indicates the lifespans
of objects relative to those messages. Timing diagrams: a specific
type of interaction diagram where the focus is on timing constraints.

2.4.2 The Rational Unified Process

The Rational Unified Process (RUP) is a prescriptive, well-defined system develop-
ment process, often used for object-oriented systems development [102]. The key
aspects of RUP are:

28

2.4. OBJECT-ORIENTED SOFTWARE ENGINEERING

Diagram
Structure Behavior
Diagram Diagram
A A
I I [— I
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Composite Deployment Package Interaction State Machine
Structure Diagram Diagram Diagram Diagram Diagram
A
[[i
Sequence Interaction
Diagram Overview Diagram
Communication Timing
Diagram Diagram

Figure 2.9: UML diagrams .

e Iterative and incremental. The process recognizes that it is practical to

divide large projects into smaller ones or mini-projects. Each mini-project
comprises an iteration that results in an increment. An iteration may encom-
pass all the activities in the process; item Risk driven. Risk management
is integrated into the development process and the iteration plan is developed
based on high priority risks;

Use-case driven. The process employs use-cases to drive the development
from the beginning of the project to its end;

Architecture centric. Architecture is the primary artifact to conceptualize,
construct, manage and evolve the system. The process seeks to understand the
most significant static and dynamic aspects in terms of software architecture.

RUP is structured in two dimensions: phases, which represent the four major
stages that a project goes through over time, and disciplines, which are logical
grouping of activities that take place throughout the project [102] (see Figure 2.10).

As depicted in Figure 2.10, RUP consists of four phases:

1.

Inception. This phase is all about understanding the project scope and ob-
jectives and getting enough information to confirm that the project should be
attempted. The main objectives of this phase are:

e Understand what to build;
o Identify key system functionality;

29

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

e Determine at least one possible solution;
e Understand the costs, schedule and risks associated with the project;

e Decide what process to follow and what tools to use.

2. Elaboration. During this phase, the system requirements are specified in

greater detail and the architecture is defined and proved. The objectives of
this phase are:

e Get a more detailed understanding of the requirements;

e Design, implement, validate and baseline the system architecture;

e Mitigate essential risks and produce more accurate schedule and cost
estimations;

e Refine the development case and put the development environment in
place.

3. Construction. During this phase, the system is developed to the point where

it is ready for deployment. If necessary, early release of the system are de-
ployed, either internally or externally, to obtain user feedback.

. Transition. This phase focuses on delivering the system into production.
The goal of this phase is to ensure that the requirements have been met to the
satisfaction of the stakeholders. This phase is often initiated with a beta release
of the application. Other activities of this phase include site preparation, user
manual completion, and defect identification and correction.

RUP phases are divided into one or more iterations. Iterations address only

a portion of the entire system being developed. Each iteration has a fine-grained
plan with a specific goal and builds upon the work done by previous iterations.
During each iteration we will alternate back and forth between the activities of the
disciplines to achieve the goals of that iteration. The disciplines of RUP include:

1. Business Modeling. The goal of the business modeling is to understand the

needs of the business. It involves working closely with the project stakeholders
to assess the current status of the organization in which a system is to be
deployed (the target organization) and identify improvement potentials.

. Requirements. The goal of the requirements discipline is to elicit, document,
and validate the scope of the project — what is and what is not to be built.
This information is used by analysts, designers and programmers to build the
system, by testers to verify the system, and by the project manager to plan
and manage the project.

30

2.4. OBJECT-ORIENTED SOFTWARE ENGINEERING

. Analysis and Design. The goal of this discipline is to analyze the require-
ments for the system and to design a solution to be implemented, taking into
consideration the requirements, constraints and all applicable standards and
guidelines.

. Implementation. The goal of the implementation discipline is to transform
the design into executable code and to perform a basic level of testing, in
particular unit testing.

. Test. The goal of the test discipline is to perform an objective evaluation to
ensure quality. This involves finding defects, validating that system works as
designed and verifying that the requirements are met.

. Deployment. The goal of the deployment discipline is to plan for the delivery
of the system and to execute the plan to make the system available to end users.

. Configuration and Change Management. The goal of this discipline is
to manage access to the work products of the project. This involves track-
ing versions over time as well as controlling and managing changes to these
versions.

. Project Management. The goal of this discipline is to direct the activities
that take place throughout the project. This involves managing risks, directing
people and coordinating with people and systems outside the scope of the
project to be sure that it is delivered on time and within budget.

. Environment. The goal of this discipline is to support the development
organization in terms of ensuring that the proper process, guidance (standards
and guidelines), and tools(hardware or software) are available for the team as
needed.

31

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

Disciplines

Business Modeling

Requirements
Analysis & Design
Implementation

Test

Deplayment

Configuration & Change Managemeant #—

Project Management

Environmen! pe—— e i— —
(e) (s][Bab2 | const] foorsts] foori] [1an) ran
- lterations o

Figure 2.10: The rational unified process (from [102]).

2.5 Agent-Oriented Software Engineering

Agent-oriented software engineering is one of the most recent contributions to the
field of software engineering. Its main concept is the agent but there is at present no
a universal consensus on its definition. However, an increasing number of researchers
find the following characterization useful [167]:

An agent is an encapsulated computer system that is situated in some environment,
and that is capable of flexible, autonomous action in that environment in order to
meet its design objectives.

An agent can be useful as a stand-alone entity that delegates particular tasks
on behalf of a user (e.g. a personal digital assistant and e-mail filter). However,
most of the cases, an agent exists in an environment inhabited by other agents,
called a Multi-Agent System (MAS). In a MAS, the global behavior derives from the
interaction between the constituent agents: they cooperate, coordinate or negotiate
with one another [159].

Similar to the research issues of other branches of SE, e.g. OOSE, the main
purposes of AOSE are to create methodologies and tools that ease the development

32

2.5. AGENT-ORIENTED SOFTWARE ENGINEERING

of agent-based software which has to be flexible, easy-to-use, scalable and of high
quality.

2.5.1 Benefits of AOSE

Comparing to other programming paradigms, Agent-oriented programming (AOP)
can be seen as an extension of OOP [158]. As described in section 2.4, the main
concept of OOP is the object. An object is a logical combination of data structures
and their corresponding methods (functions). Agents are similar to objects, but
they also support structures for representing mental components, i.e. beliefs and
goals. As opposed to objects, agents are able to act without external intervention
in order meet theirs goals. In addition, agents support high-level interaction using
agent communication languages (e.g. FIPA ACL and KQML) between agents based
on the “speech act” theory as opposed to ad-hoc messages frequently used between
objects [107].

Indeed, there is no evidence yet to suggest that AOSE will become broadly used
in enterprise system developments. However, there are convincing arguments that
analyzing, designing and implementing a complex software system as a collection of
interacting autonomous agents represents a promising point of departure for software
engineering [86]. In [86], the authors show that:

e the agent-oriented decompositions are an effective way of partitioning the prob-
lem space of a complex system. A complex software system can be decomposed
into subsystems, the same way that a MAS can be decomposed into the ele-
ments that constitute the system (software agents);

e the key abstractions of the agent-oriented mindset, such as agents, (social)
interactions and organizations, are a natural mean of modeling complex sys-
tems;

e the agent-oriented philosophy for identifying and managing organizational re-
lationships is appropriate for dealing with the dependencies and interactions
that exist in a complex system.

2.5.2 MAS Development Methodologies

MAS has become one of the most interesting research fields in the computer science
community. Many MAS software development methodologies have been proposed
such as GAIA [168], MASE [59], MESSAGE [42], Tropos [48], INGENIAS [132],
PASSI [40] and ADELFE [22].

Tropos is typically representative of these methodologies. It is a requirements and
organizational driven software development methodology that is founded on inten-
tional and social concepts. Tropos adopts the i* organizational modeling framework

33

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

[171], which offers the notions of actor, goal and (actor) dependency, and use these
as a foundation to model early and late requirements, architectural and detailed de-
sign. Tropos and other MAS software development methodologies use the Waterfall
Software Development Life Cycle. These methodologies typically do not cover all the
aspects of the software engineering life cycle depicted in the Spiral Model as some
object-oriented development methodologies do such as the Unified Process [103]. It
is obvious that the advantages of spiral development, such as efficient acquisition,
early implementation, continuous testing and modularity should be applied in the
development of Agent-Oriented software.

I-Tropos [159, 163, 164] is an interesting representation of spiral SDLC method-
ologies since it is an original spiral software development process for agent-oriented
software development. It extends the waterfall SDLC of the Tropos methodology to
a spiral one in order to include the iterative use of several software engineering and
project management disciplines during the different phases of the process. These
phases are typically inspired by the UP project management processes family [103];
they concern the inception of the project, more specifically the requirements gath-
ering and business case definition, the elaboration of the logical architecture of the
system-to-be, the construction of the system and finally the transition to put the
system in production and operation.

I-Tropos is made of disciplines repeated iteratively during these phases while
the effort spent on each discipline is variable from one iteration to another. The
core disciplines of I-Tropos are Organizational Modeling, Requirements Engineering,
Architectural Design, Detailed Design, Implementation, Test and Deployment. The
Organizational Modeling and Requirements Engineering disciplines are respectively
strongly inspired from Farly and Late Requirements phases of Tropos. Moreover,
I-Tropos includes support disciplines to handle the project development i.e. Risk
Management, Time Management, Quality Management and Software Process Man-
agement.

2.6 Chapter Summary

This chapter has presented the state of the art in the SE. It focuses on the relevant
approaches to our research context. Firstly, it presented different definitions of SE
and specifies the one that best match our work — “SF is an engineering approach to
the software systems development that provides methodologies, tools and techniques
to help software system developers in the analysis, design, implementation and test-
ing of software system.”.

Next, it has presented our review on relevant RE frameworks and explained our
selection of them to be used within our methodology. The selected RE frameworks,
i.e. the i* and NFR frameworks, are also presented.

34

2.6. CHAPTER SUMMARY

Then, it has introduced some representative software development life cycle mod-
els including the sequential model, the V model and the incremental model. It also
exposed OOSE which has been the most widely-used in the development of infor-
mation systems. It introduced unified modeling language (UML) and the software
development process (RUP) that constitute the OOSE.

Finally, this chapter described AOSE. It pointed out its benefits and overviewed
some relevant MAS methodologies, specifically Tropos and I-Tropos.

35

CHAPTER 2. SOFTWARE ENGINEERING: A SURVEY OF RELEVANT
APPROACHES

36

Chapter 3

Component Based Software
Development

This chapter provides a state of the art review on COTS-Based Software Develop-
ment (CBSD). Section 3.1 presents the characteristics of COTS components. Section
3.2 overviews some relevant CBSD life cycle models. Section 3.3 introduces rep-
resentative COTS selection approaches. Section 3.4 describes different evaluation
strategies that have been used during COTS selection. Section 3.5 reviews three
main decision making techniques for COTS selection. Section 3.6 exposes software
project management for CBSD.

3.1 COTS Component

This section presents the characteristics of COTS components. It begins with the
COTS definitions and followed by the component granularities.

3.1.1 COTS Definition

The literature about COTS addresses several development issues and is very het-
erogeneous in terminology. A consensus about the COTS characteristics and their
definition does not exist. However, authors agree that COTS are a special class of
reusable components.

COTS can be either software or hardware or a mixture of both. In this disserta-
tion, we only focus on software COTS, however some of the issues and advices
are equally applicable to hardware.

A survey about the different meaning and coverage of the COTS is presented
in [121], as summarized in Table 3.1. In addition, more recently, [153] gives the
detailed, empirically based definition: “A COTS product is a commercially available

37

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

or open source piece of software that other software projects can reuse and integrate
into their own products.”

From these definitions we can see that off-the-shelf products coverage can be
very different. More likely, researchers and practitioners could use the same word
with different meanings. Some of them use the term COTS covering freeware and
Open Source Software as well as other kinds of components (e.g.,[117][24]).

3.1.2 COTS Component Granularity

The authors of [78] define different levels of COTS component granularity that define
quite different categories of component as depicted in Figure 3.1. They are presented
bellow from the finest-grained to the most coarse-grained.

Component

Iy

I

System-Level
Component

? Business
Component

? Distributed
Component

Figure 3.1: Different levels of component granularity (from [78]).

3.1.2.1 Distributed Component

The lowest granularity of software component is called a “distributed component.”
It is normally realized using a component implementation technology such as COM
[58], Enterprise Java Beans [6], or a CORBA-Component product [68]. The dis-
tributed component has the following implementation characteristics:

e It has a well-defined build-time and run-time interface;
e It can be independently plugged into a run-time environment;

o It is network addressable, meaning that it can be addressed over the network
at run-time.

A distributed component is normally composed of a number of classes, as illus-
trated in Figure 3.2.

38

3.1. COTS COMPONENT

Table 3.1: Different definitions of COTS (from [121]).

Vigder
[157]

and Dean

Define COTS as pre-existing software products, sold in
many copies with minimal changes; whose customers have
no control over specification, schedule, and evolution; ac-
cess to source code as well as internal documentation
is usually unavailable; complete and correct behavioral
specifications are not available.

Carney
[47]

and Leng

This approach considers Origin and Modifiability as at-
tributes to define COTS. The possible values for these
attributes are:

e Origin: Independent Commercial Item, Special
Version of Commercial Item, Component Produced
by Contract, Existing Components from External
Sources, Component Produced In-house.

e Modification: Extensive Reworking of Code, In-
ternal Code Revision, Necessary Tailoring and Cus-
tomization, Simple Parameterization, Very Little or
no Modification.

Basili
18]

and Boehm

Specify that COTS has the following characteristics:
1. the buyer has no access to the source code;
2. the vendor controls its development, and;
3. it has a non-trivial installed base.

This definition is more restrictive and does not take into
account some types of software products like software
products developed for special purposes and not widely
deployed, special version of commercial software products
and open source software.

Software Engineer-
ing Institute (SEI)
[37]

A COTS product is: sold, leased, or licensed to the gen-
eral public; offered by a vendor trying to profit from it;
supported and evolved by the vendor, who retains the in-
tellectual property rights; available in multiple, identical
copies; and used without source code modification.

39

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

Distributed component
- ()« Distributed comp
DynamicList OrderFocus interface
‘ ~
~
~ ~
7 |
OrderLines AbstractOrder I~
] +---t---—-" Classes
7
7
7
7
e
7
7
4
Order Quote | Sales Order distributed
- component

Figure 3.2: Example of a distributed component and classes (from [78]).

In [78], the nature of the distributed component is defined from the point of
view of the functional designer. The functional designer should not be concerned
with technical complexities such as locating objects on the network, how data is
communicated from a client to a server, transactional boundaries, concurrency, event
management, etc. The definition of distributed component abstracts these and other
aspects and is largely technology independent.

3.1.2.2 Business Component

Following [78], a business component is the software implementation of an au-
tonomous business concept or business process. It consists of all the software arti-
facts necessary to represent, implement, and deploy a given business concept as an
autonomous reusable element of a larger distributed information system.

A business component does not represent just any business concept, but those
concepts that are relatively autonomous in the problem space. For example, the con-
cept customer would normally be a good candidate, whereas date would probably
not. It is implemented using software component technology which is as a composi-
tion of distributed components. “Autonomous” does not mean isolated. As business
concepts in the problem space relate to other concepts, for example, an order is by
a certain customer for one or more items, so business components mainly provide
useful functionalities through the collaboration with other business components.

3.1.2.3 System-Level Component

A system-level component, corresponds to an information system, e.g. an invoice
management system or a payroll system. [78] defines it as follows:

40

3.2. CBSD LIFE CYCLE MODELS

A system-level component is a set of cooperating business components assembled
together to deliver a solution to a business problem.

According to this definition, a system-level component is simply a set of coop-
erating business components able to provide a business solution, that is, to address
a specific business problem in the domain space. An example of a system-level
component that manages vendor invoices is depicted in Figure 3.3 where each box
represents an individual business component.

_| System-level component

: Invoice ™77 "« Invoice Management »
Manager ¥~ |
| ~. |
| . AN
| |Invoice \:\\
| - 5 Individual business
| Vendor - components
! it
! s |
| Address Currency |
| Book Book |
|
|
| Notes Number |
| Generator |
|

Figure 3.3: Example of a system-level component (from [78]).

3.2 CBSD Life Cycle Models

There is a consensus that the use of a COTS component implies changes in the
software process [37]. Most studies on CBSD found in literature can be positioned
on one of the two following levels: at the level of the whole CBSD life cycle or at
the level of one of its phases e.g. COTS selection. This section presents different
life cycle models for CBSD that have been proposed in the literature.

3.2.1 The Sequential Model

A CBSD process that follows the sequential approach is proposed by Sommerville
in [152]. It is composed of six phases illustrated in Figure 3.4:

e Outline System Requirements. The user requirements are outlined briefly
— rather than developed in detail, as specific requirements limit the number of
components that might be used;

e Identify Components. A complete outlined set of requirements are used to
identify as many components as possible for reuse;

41

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

Negotiate Requirements. Requirements are refined and modified so that
they can comply with available components;

Architectural Design. Architectural design is developed;

Search for reusable components. Requirements can be negotiated to in-
corporate architecture compatible components. After system architecture is
designed, steps 2 and 3 may be repeated;

Integration. Finally the chosen components are integrated to build the sys-
tem.

Outline system | Identify | Negotiate
requirements component "1 requirements

\
]

A

. Search for
Architectural Comonents
. » reusable » - .
design integration
components

Figure 3.4: The CBSD process model proposed in [152].

On the other hand, Morision et al. [120] have investigated the various processes
that were used across fifteen CBSD projects at the National Aeronautic and Space
Administration (NASA). Figure 3.5 illustrates the process that is the most represen-
tative for the processes used in the projects. This process also follows the sequential
approach.

External
Information [7777 7T 7T T Vendor p

N
\
~
Integration Discrepancy)
and Resolutiol
Test
Sustaining
Engineering

, ~

'

'
Requirements
Analysis
\
»

\
'

Identify
Glueware and
Integration
Requirements,

Package

Identification
Evaluation/

Selection

Non-COTS
Development

______ information flow — bidirectional heck .
process check or review process
» sequence D

A hard requirements C> traditional waterfall development [] separate entity

Write
Glueware

and
Interfaces,

System
Design
Review

System
Requirements
Review

Target
System
Installation and
Acceptance

System
Architecture'

Figure 3.5: NASA’s CBSD process (from [120]).

42

3.2. CBSD LIFE CYCLE MODELS

3.2.2 The V-Model

In [56

|, Crnkovic proposes a process model for CBSD by adapting the V-model for

traditional software development. The activities in different phases of this develop-
ment process is illustrated in Figure 3.6.

Requirements Analysis and Specification. Requirements are analyzed
and specified keeping in mind the available components. If possible, require-
ments can be negotiated as well in order to make use of the available compo-
nents;

System and Software Design. In this phase again, component pool is
available. Components selected in the previous phase may have to be rejected
if they do not fit into the overall design of the software. Alternatives can be
selected from the component pool;

Implementation and Unit Testing. An ideal case to build an application
is the direct integration or connection of component interfaces. But in prac-
tice, glue code/component wrappers need to be written to bridge component
interface mismatches. Sometimes new functions have to be written to fill the
gaps in system requirements and component capabilities. These modules are
then tested separately;

System Integration. The integration process includes integration of stan-
dard infrastructure components such as database management and commu-
nication software components that build a components framework and the
application components;

System Verification and Validation. Standard tests and verification tech-
niques are used here. Error identification is more difficult in case of black box
components, which are procured from various vendors;

Operation Support and Maintenance. In the operational system, new
components may have to be added or existing components have to be modi-
fied /removed in order to support the changing requirements. The support and
maintenance process includes deployment of new or modified components in
the system, change in glue-code, or replacement of troubling components.

3.2.3 The Y-Model

Capretz proposed in [44] a CBSD life cycle named the Y model. In this model,
basic activities of a software development process such as System Analysis, Design,
Implementation, Testing, Deployment and Maintenance are available as such. Some

43

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

Operation and maintenance

/ ‘
Requirements Select test
PN /
- . Component
System System integration and deplc?ym ent
design component deployment L
A
Y
A Y
. Select Test
Inspect Inspect Select Test
~__ < N\ /4 T \“ /
Sl AN s 17 Adapt
Sso \\ i Adapt | -
SO | =
~ \ | -

Component pool

Figure 3.6: The V-model adapted for component-based system development (from
[56]).

additional activities are added to support the component-based software develop-
ment as depicted in Figure 3.7. New phases introduced in this process are as follows:

e Domain Engineering. Domain engineering is concerned with identification
of potentially reusable components for a particular domain. For example in
the banking domain, the components such as CreateAccount, CheckBalance,
DepositAmount and WithdawAmount can be reused across multiple banking
applications. Domain engineering is a process of analysing an application
domain in order to identify area of commonality and ways to describe it using
a uniform vocabulary;

e Frameworking. A framework is a skeleton or a template used for producing
software in an application domain. Frameworks capture the semantic rela-
tionships between the components of a particular domain. The main purpose
of frameworking phase is to reuse the software components already developed
and then classify them further to form new frameworks.

e Assembling. In this phase, the software application is composed from the
existing reusable software components;

e Archiving. The components developed for a particular software application

44

3.2. CBSD LIFE CYCLE MODELS

are archived for future use in other related applications. This involves activities
such as cataloging and storage.

System analysis Maintenance
A A
A A
Design Deployment
A A
A J A 4
Implementation Testing
Assembly
A\ Selection/ A Catalog/ | |
\ adaption \ storage ,’
\\ Archiving //
N A -«

\4
Frameworking

A

Y
Domain

engineering

Figure 3.7: The Y-model (from [44]).

3.2.4 The Evolutionary Process for Integrating COTS

The Evolutionary Process for Integrating COTS (EPIC) [4] is a modified form of
RUP [102]. The essence of the process lies in a “simultaneous definition and trade-
offs” among four spheres of influence, as depicted in Figure 3.8[4].

e Stakeholder needs and business processes denotes requirements (includ-
ing quality attributes such as performance, security, and reliability), end-user
business processes, business drivers, and operational environment;

e Marketplace denotes available and emerging COTS technology and products,
non-development items and relevant standards;

e Architecture and Design denotes the essential elements of the system and
the relationship between them. The elements include structure behavior, us-

45

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

age, functionality, performance, resilience, reuse, comprehensibility, economic
and technology constraints and tradeoffs, and aesthetic issues;

e Programmatics and risk denotes the management aspects of the project.
These aspects consider the cost, schedule, and risk of building, fielding, and
supporting the solution to include the cost, schedule, and risk for changing the
necessary business processes.

Stakeholder needs
Business Processes

Simultaneous
Definition and
Tradeoffs

Marketplace

Programmatics/
Risk

Figure 3.8: EPIC’s spheres of influence (from [4]).

These four spheres are simultaneously defined and traded through the life of
the project because a decision in one sphere will inform and likely constrain the
decision that can be made in another sphere. For instance, a stakeholder need may
be stated in a way that cannot be satisfied by any pre-existing component. Similarly,
a potential pre-existing component may not be compatible with the organization’s
existing infrastructure or use a licensing strategy that would be cost prohibitive.
Furthermore, the new release of an already selected component may change the
behavior of the solution.

In order to maintain balance between the four spheres, EPIC creates an envi-
ronment that supports the iterative definition of the four spheres over time while
systematically reducing the trade space within each. This allows a decision in one
sphere to influence, and be influenced by, decisions in other spheres. Each iteration
in EPIC, as depicted in Figure 3.9 consists of:

1. Planning the iteration;

2. Gathering information and refining the solution set;

3. Assembling an executable system;

4. Assessing how closely the iterations objectives were (or were not) met.

46

3.2. CBSD LIFE CYCLE MODELS

Gather Information

akeholdel
needs/ Business
Rrocesse

Simultaneous
Definition and
Tradeoffs

Refine Solution

Plan Assemble
Iteration EPIC Executable
Iteration
Assess
Iteration

Figure 3.9: An iteration in EPIC (from [4]).

While these activities are the same for every iteration, the focus, depth, and
breadth of the activities within an iteration are adjusted to meet specific iteration
objectives.

47

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

3.3 COTS Selection Processes

While progressing, COTS research has proposed several approaches for addressing

diverse aspects of COTS selection [116]; a summary is depicted in Table 3.2.

Table 3.2: COTS selection evolution (adapted from [116]).

1999 OTSO [98] The basic structure of COTS selection process

1996 OTSO [99] [100] | Further elaboration of OTSO

1997 TusWare [122] Forr'nahzatlon of of the COTS selection activities
(mainly evaluation)
Generic architecture to be used during the

1997 PRISM [109] COTS evaluation process

1997 CISD [154] Multiple COTS selection

1993 PORE [110] Requlrements engineering process for COTS se-
lection process

1999 STACE [105] Studying the effects of social factors

2000 CAP [130] Tailorability of the evaluation process

2001 CRE [8] Emphasis on non-functional requirements

2001 CARE [49) Furtber refinement f(')r the 1‘“equ1rements engi-
neering process (ongoing project)

2002 PECA [54] Detailed tailorable process

92002 StoryBoard [74] Use of screenshots and use-cases for require-
ments

2002 CS [39] Multiple COTS selection

2003 WinWin [28] Risk-driven evaluation

2004 DesCOTS [73] Using quality models during the evaluation

. Systematic handling for the mismatches be-

2007 MiHOS [117] tween COTS attributes and requirements

2008 GOThIC [15] Goal-oriented method for structuring COTS
market-place

This section does not aim at describing all the existing COTS selection ap-
proaches in literature but only some relevant ones on the basis of the different

aspects of COTS selection that they have addressed.

3.3.1 Basic Structure of COTS Selection Process

Following [116], the Off-the-Shelf Option (OTSO) method has been considered as
the first widespread COTS selection method. It was firstly proposed by Kontio in
[98] and was then further elaborated in [99] and [100]. OTSO is considered as an

48

3.3. COTS SELECTION PROCESSES

important milestone in the evolution of COTS selection practices as it served as a
basis for other approaches. It defined the basic structure of the COTS selection
process.

This method compares COTS products based on two factors: wvalue and cost.
The value is estimated based on hierarchical criteria which consist of functionalities,
qualities, strategic concerns, and architectural constraints. The cost is estimated
based on: acquisition cost, further development costs, and integration cost.

The OTSO method is composed of the following main steps:

1. Evaluation criteria: defining evaluation criteria;
2. Search: searching the market for possible COTS;

3. Screening: filtering out the COTS that do not comply with the must-have
requirements;

4. Evaluation: evaluating the benefit and cost of each COTS candidate;

5. Analysis of results: using the analytic hierarchy process (AHP) [144] to
consolidate the evaluation results and select a COTS product.

The OTSO method provides the basic structure of COTS selection methods and
serves as a basis for other approaches. However, the main limitation of this approach
is the lack of attention to requirements. It assumes that the requirements have been
already defined and that they are fixed. Consequently, the method does not provide
or suggest any effective mean to acquire requirements. Moreover, the OTSO just
mentions the possibility to have mismatches between the system requirements and
COTS features but do not provide any strategy on how to deal with them. Note
that such situations are very common in CBSD and need to be properly examined.

3.3.2 Requirements-Driven COTS Selection Approaches

The importance of a suitable requirements engineering process for CBSD has been
more and more evidenced since 1998. In this context, the Procurement-Oriented
Requirement Engineering (PORE) [110] approach represented a key milestone. It
suggests that requirements engineering and the elicitation of COTS features be con-
ducted in parallel, as depicted in Figure 3.10. This means that the defined require-
ments inform the selection process and vice versa, which is more realistic than a
fixed set of requirements.

Moreover, the PORE approach applies the progressive filtering evaluation strat-
egy (i.e., the products that do not meet core requirements are selectively and it-
eratively rejected and removed for the candidate list). At the beginning of the
process there are few requirements specified and a large number of candidate prod-
ucts. Through several iterations, it is possible to refine the product list until the

49

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

most suitable product is selected. According to the method, the compliance between
features of COTS and system requirements is a fundamental step for effective prod-
uct selection. However, it does not describe in detail how the matching between
requirements and COTS features is performed and how products are eliminated.

Increasing number and detail Decreasing number of
of requirements statements enables candidate products

. filtering
Requirements Product

acquistion selection

informs

Figure 3.10: Overview of the PORE’s iterative process (from [127]).

The COTS-Based Requirements Engineering (CRE) [8] is another requirements-
driven COTS selection approach. It emphasizes the important of non-functional
requirements as decisive criteria to evaluate alternative COTS components. A key
issue addressed by this method is the definition and analysis of NFRs during the
COTS selection process. It adopts the NFR framework proposed in [53] (see Section
2.2.2) for gathering the user NFRs. Similarly to the PORE , the CRE approach
suggests iterations between requirements acquisition and product selection applying
the progressive filtering evaluation strategy. The CRE approach is composed of
four iterative phases: Identification, Description, Evaluation, and Acceptance. The
identification phase is based on a careful analysis of influencing factors; there are
five groups of factors: user requirements, application architecture, project objective
and restrictions, and product availability and organizational infrastructure. The
core requirements and COTS candidates are identified in this phase. During the
specification phase, further requirements are defined. The NFR framework is used to
model the NFRs. In the evaluation phase, COTS candidates are evaluated. During
the acceptance phase, the evaluation team has to resolve legal issues pertaining to
the purchasing of the product and licensing. The highest ranked COTS is selected
if it passes some legal acceptance tests; if not the next COTS is taken, and so on.
One of the main drawbacks of this methods is it does not address issues of quality
testing and it is not clear how the product’s quality issues are verified with regard
to the system non-functional requirements. Another problem with the method is
concerned to the lack of support in cases when NFRs are not properly satisfied.

In 2001, a project was started by Chung et al. to define a more complete
COTS selection approach called COTS-Aware Requirements Engineering (CARE)
approach [49][50][51][52]. The CARE approach draws upon the ideas of existing
methodologies including Rational Unified Process (RUP) [84], Model-Based Archi-

50

3.3. COTS SELECTION PROCESSES

tecting and Software Engineering (MBASE) [27], and PORE [127]. The goal is to
complement and extend these methodologies in order to provide a requirements en-
gineering methodology that is agent- and goal-oriented, and explicitly support the
definition and selection of COTS from a technical view. It assists the requirements
engineer with the challenging tasks of defining goals, matching, ranking, and select-
ing potential COTS components, and negotiating changes to the components and /or
the system under development. The CARE approach emphasizes the importance to
keep requirements flexible since they have to be constrained by the capabilities of
available COTS components.

Figure 3.11 shows an overview of the CARE process. When defining the system
goals, the CARE approach considers the identification, definition, and interactions
among agents, or stakeholders for a system. Once the agents are identified, their
goals for the system need to be defined; these goals are used to drive the system
development. Goals are high-level objectives of the system. They may be func-
tional (hardgoals) or non-functional (softgoals). The CARE approach uses the i*
framework [170] (see Section 2.2.1) for modelling agents, hardgoal and softgoal de-
pendencies among agents, and how agents accomplish a goal. When defining the
system goals, the requirements engineer would usually go through successive goal
refinements. Such refinements can take the form of decomposition of goals into
subgoals, identification of the conflicting and synergistic relationships among goals,
and negotiation of the conflicts discovered. The CARE approach adopts the NFR
framework for supporting the goal refinements. Moreover, the CARE approach uses
a knowledge base (repository) that is populated with description of components.
The descriptions of the COTS components are stored and maintained at two levels
of abstraction: their goals and their detailed specifications. The goals provide high-
level description of the functional and non-functional capabilities of a component.
On the basis of the component descriptions, searches are enabled to determine which
components appear to be potentially useful. Although the approach points out the
importance of mapping system requirements and components specification, it does
not provide or suggest any systematic solution to support the possible mismatching
between them.

3.3.3 Mismatch-Handling Aware COTS Selection

The Mismatch-Handling Aware COTS Selection (MiHOS) [118] proposes a struc-
tured way to handle the COTS mismatches during and after the selection process.
This approach supports decision makers in dealing with two key issues:

e Handling COTS mismatches during and after the selection process. This

means analysing the mismatches, and then making appropriate decision about
their resolutions;

o1

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

Define Goals
create a System Goal Model using
scenarios, NFR Framework, etc.

Select Component
select set of COTS
components

Match Goals

search for COTS
components that match
SUD goals (functional first,
non-functional second)

Negotiate
Changes
to COTS, SUD

Where SUD is the system under development

Rank Components

perform a gap analysis to rank
the COTS components using
the NFR framework

Figure 3.11: An overview of the CARE process (from [52]).

e Estimating the anticipated fitness of COTS products if their mismatches are
resolved under limited resources. This helps to select COTS products based
on the fitness they will eventually have, if they are selected.

The MiHOS approach is composed of two main parts:

e MiHOS.Select refers to the actual COTS selection process. It includes six
steps: Steps 1 to 4 constitute the DuringFEvaluation phase, and Steps 5 and
6 constitute the AfterFEvaluation phase. Like most other COTS selection ap-
proaches, the MiHOS approach starts by defining a set of evaluation criteria.
It uses a goal graph to represent the requirements whereby high-level require-
ments (Strategic goals) are decomposed into less abstract ones until reaching
a level (Technical goals) at which their satisfaction can be directly judged
in a COTS product. The MiHOS approach also suggests iterations between
requirements acquisition and product selection;

e MiHOS.Handle refers the mismatch handling component. It includes two
main parts: Part (A) which should be considered in the DuringFEvaluation
phase, and Part (B) which should be considered in the AfterEvaluation phase.
For mismatches that are considered in the DuringFEvaluation phase, MiHOS
suggests three possible actions to handle them: Resolve by requirements ad-
justment, Tolerate, or Postpone. Postponed mismatches are stored in a mis-
matches repository. In the AfterEvalution phase, the postponed mismatches

52

3.3. COTS SELECTION PROCESSES

are analysed by a special component called IDS (Iterative Decision Support for
mismatch handling). The output from IDS includes: 1) the anticipated fitness
of COTS candidates, which is used at Step 5 of MiHOS.Select to select the
best-fit COTS, and 2) mismatch resolution plans, which are used at Step 6 of
MiHOS.Select to resolve the right set of mismatches using the right resolution
actions.

The main limitation of this method is that it focuses only on selecting a single
COTS software product since it does not address the interoperability problem be-
tween COTS products as well as architectural mismatches. Furthermore, it focuses
more on functional requirements than the non-functional ones.

3.3.4 Multiple COTS Selection

The COTS selection approaches that we have described above are suitable only
for single COTS selection. However, as argued in [154], COTS components are
designed to meet the needs of a marketplace rather than to satisfy the requirements
of a particular organization. Consequently, there is no single component satisfying
all the defined requirements. Hence, it is necessary to have adequate methodologies
for multiple COTS selection. In this context, the Combined-Selection (CS) [39]
is a COTS selection approach aiming to support the multiple COTS selection. It
suggests to perform the activities related to COTS selection at two levels: global
and local. The global level is responsible of selecting the set of COTS products that
will be used to build a COTS-intensive system. It supervises the evolution, and
synchronizes the results, of the different individual selection processes for each area.
Its main objective is to find the best overall combination of products. The local level
uses existing COTS evaluation and selection techniques (e.g OTSO [98] or PORE
[127]) to select individual COTS products that are combined at the global level.
The Combined-Selection approach composes of the following main steps:

Plan the combined selection process and enactment of the individual selection
processes (global level);

Identify COTS candidates for individual areas (local level);

Identify global COTS integration scenarios (global level);

Evaluate individual scenarios at each individual area (local level);

Evaluate integration scenarios (global level);

Select the COTS products (global level).

93

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

This approach contributes to the improvement of the COTS-based system devel-
opment by proposing a structured way for managing the multiple COTS selections.
However, it proposes only a high-level process without recommending techniques
for use in the process such as identifying different COTS components needed, and
conflicts between the selected COTS components. Moreover, by using the existing
COTS selection approaches for the local level, the approach inherits the weaknesses
of the method used at this level.

3.3.5 Social-Technical Approach to COTS Evaluation

Among the existing COTS selection approaches, the Social-Technical Approach to
COTS Evaluation (STACE) [105] has been the first approach to emphasize the im-
portant of non-technical factors such as costs, business issues, vendor performance
and reliability during the component evaluation process. Costs include direct costs,
such as the price of the COTS components, and indirect costs, such as the cost
of adapting to local needs as well as training costs. Business issues include people
and process problems that must be overcome before successfully implementing the
COTS-based system, such as as management support and internal organizational
politics, staff skills and attitudes. Vendor performance and reliability includes ven-
dor infrastructure and stability, vendor reputation, references, customer base and
track record.

3.4 COTS Evaluation Strategies

COTS evaluation is one of the main steps of the COTS selection process; it deter-
mines the fitness of COTS products. The output of this step provides necessary
information for supporting the COTS selection decision making. In literature, there
are three strategies that can be followed to conduct COTS evaluation [106][129]:

1. Progressive filtering represents a strategy whereby a COTS product is se-
lected from a relatively large number of COTS products. Then, progressively
more discriminating evaluation mechanisms are applied in order to eliminate
less fitting products;

2. Puzzle assembly represents a strategy which begins with the promise that
a COTS-based system requires to assemble various components together as
pieces of puzzles (e.g. COTS-intensive systems). This implies that a prod-
uct that fits in isolation might not be acceptable when combined with other
products. Therefore, this strategy suggests simultaneously considering the
requirements of all products in the puzzle;

3. Keystone identification represents a strategy which starts by identifying
a set of key requirements and after, searches for products that satisfy these

54

3.5. DECISION MAKING TECHNIQUES FOR COTS SELECTION

requirements. This allows quick elimination of a large number of products that
do not satisfy the key requirements.

As stated in [129], more than one of these three strategies may be employed in
a COTS selection process. For example, keystone identification may be used first,
then, at the second stage, progressive filtering. In our research work, we apply
these three strategies jointly. Our methodology begins with puzzle assembly,
then followed by keystone identification and progressive filtering. More precisely, our
COTS selection process begins with the identification of all the system-level compo-
nents that need to be integrated into the puzzle and the non-functional requirements
and architectural constraints that concern every part of the system (puzzle assem-
bly). These non-functional requirements and architectural constraints will be used
to evaluate the COTS component candidates in order to ensure that the selected
components can be easily integrated into the system. Then for each required system-
level component we define first the key requirements in order to quickly eliminate
a large number of COTS component candidates that do not fulfill the key require-
ments (keystone identification). The pre-selected candidates will be progressively
filtered until we get a COTS component that best meet the requirements (progres-
sive filtering).

3.5 Decision Making Techniques for COTS Selection

In order to select a suitable COTS component, each candidate should be ranked on
how well it fits users’ requirements. Decision making techniques have been used in
existing COTS selection methods for this purpose. In this section, we overview some
decision making techniques that are commonly used in COTS selection processes.

3.5.1 Weighted Score Method or Weighted Average Sum

The Weighted Score Method (WSM) or Weighted Average Sum (WAS) is an aggre-
gation technique and the most commonly used technique in many decision making
situations. The WSM/WAS technique calculates the overall fitness for each compo-
nent against the evaluation criteria using the formula:

OverallScore; = 3771 (weight; * score;j) for i =1,2,...,m
Where m is the number of alternatives, n is the number of criteria, weight; is the
weight of the j** criterion, and score;; is the fitness score of ith COTS component
in terms of the j* criterion.

The weight of each criterion is assigned by decision makers in accordance to
its importance and the fitness score represents the compliance of the component
candidate with a specific criterion. Table 3.3 shows an example of the application of

95

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

the method for the COTS selection. In the example, three components are evaluated
against five criteria. The weights of criteria are rated on a 9-point scale:

e 1 indicates a criterion that is unimportant;
e 9 indicates a criterion that is extremely important;
e Any value between 1 and 9 indicates intermediate levels of importance.

In addition, the fitness scores are estimated and assigned value from 0 to 1;
0 indicates no satisfaction and 1 indicates full satisfaction of the criterion by the
component candidate. The overall scores are calculated using the equation above. In
the WSM/WAS method, the overall scores represent the ranking of the alternatives
but the differences between these scores do not indicate the relative superiority of
these alternatives.

Table 3.3: An example of WSM/WAS.

C1 7 0.6 0.8 1

C2 9 0.7 0.8 0.5
C3 5 0.9 0.7 0.4
C4 7 0.6 0.8 0.6
Total score 19.2 21.9 17.7

The application of the WSM/WAS is straight-forward and presents results that
intuitively make sense. However, as stated in [126], the WSM/WAS has several
limitations. First, as the WSM/WAS produces real numbers as results, these are
easily interpreted as if they represented truly the differences between alternatives
in ratio or distance scales. This would be true only if all the criteria weights have
been given using distance or ration scale, and this is rarely the case [99]. Moreover,
consolidating evaluation results into a single score is sometimes misleading because
a high score in one criterion will hide a poor performance in another. Second,
estimating the weight is difficult when the number of criteria is high.

3.5.2 Analytic Hierarchy Process (AHP)

The AHP method [144] is based on the idea of decomposing a multiple criteria de-
cision making problem into a criteria hierarchy as depicted in Figure 3.12. At each
level in the hierarchy the relative importance of criteria is assessed by comparing
them in pairs. [144] introduced a 9-point intensity scale for indicating the level of
relative importance which can be used in this comparison. The results of the com-
parison are then converted into normalized rankings using an eigenvalue technique

o6

3.5. DECISION MAKING TECHNIQUES FOR COTS SELECTION

(see [144]) on the comparison matrix. The normalized rankings represent the weights
of the compared criteria. Finally, the alternatives are similarly compared in pairs
with respect to the criteria. The technique suggests that comparing criteria in pairs
results in more reliable comparison results so that it is possible to avoid the problem
of having to assign absolute value to alternatives. Only their relative preferences or
values are in that way compared.

Select
suitable
component

Goal

C: C, Cs Ch
Criteria \ /\
C2.1 Cz_z C3_1 C3.k
Alternatives Component; Component, Component,

Figure 3.12: An example of AHP.

Table 3.4 shows an example of applying AHP to weight four criteria at one level
of the hierarchy. A pair-wise comparison is performed among the criteria, and the
results are represented using the 9-points scale. The resultant normalized ranking
(i.e. weight) of each criterion is listed in the Priority column of Table 3.4. In this
example, C2 is the most important criterion among the four criteria.

Saaty argues that hierarchies are a natural way for humans to organize their view
of the world and they represent real world phenomena [144]. Criteria and alternative
are compared in pairs, which results in more reliable comparisons results. This way
it avoids the problem of having to assign absolute values to alternatives.

However, according to [126], the AHP method has two key limitations. First,
AHP assumes independent criteria, which is rarely the case in real situations. Sec-

o7

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

Table 3.4: An example of AHP.

C1 1 4 5 4 14 0.357
C2 1/4 1 8 8 17.25 0.44
C3 1/5 1/8 1 5 6.325 0.161
C4 1/4 1/8 1/5 1 1.575 0.04

| | | | | 39.15 1

ond, AHP involves many pair-wise comparisons, which would require a large amount
of effort and time for a large number of criteria.

3.5.3 Gap Analysis Approach

Ncube and Dean present in [126] the limitations of current decision-making tech-
niques including the two commonly used techniques described above in the evalu-
ation of COTS software components. Consequently, they proposed an alternative
approach that can be considered as requirements-driven and that migrates the loss of
detail encountered when employing a weighted aggregation approach. The approach
applies the principle of gap analysis to evaluation and allows selection based on the
cost of bridging the gap. This requires a novel viewpoint where we examine prod-
ucts, not for the purpose of eliminating them if they do not meet the requirements,
but for the purpose to attempting to determine what capabilities the components
lack in terms of requirements. We then analyze these capabilities deficiencies to de-
termine the cost of implementing supplementary functionalities for each component
(or component set under evaluation). These are the fulfillment costs and there will
be a set of these for each evaluation that we undertake. The fulfillment costs are
used as a basis for selection of an appropriate product set.

Table 3.5 shows an example of gap analysis evaluation. In the example, three
components are evaluated against five requirements. The information about the
gaps between the evaluated components and requirements are recorded in the table.

During the gap analysis, there are three potential results:
1. the capabilities of the product and the requirements match exactly;

2. the component partially fulfills the requirements and does not provide any
inherent capabilities that exceed the requirements;

3. the component fulfills some or all of the requirements but also incorporates
capabilities that fall outside the boundaries of the original system’s needs.

o8

3.5. DECISION MAKING TECHNIQUES FOR COTS SELECTION

Limited Java sup-

Complete solu-

Table 3.5: An example of gap analysis evaluation matrix (from [126]).

Complete solu-

1 . .
R port tion tion
R2 Inaccurate math Pre01§10n only to No math engine
2 decimals

R3 10% less than re- | No reliability fig- | Complete solu-

quired reliability | ures available tion
1 lu- f

R4 (?omp ete solu- | Vendor out o Vendor Canadian
tion country

R5 (?omplete solu- Linu?< platform Windows only
tion required

Once the gaps between components and requirements have been determined, a
further step is required to establish the cost of reducing the gap to an acceptable
solution which depends on then nature of the gap:

1.

In the case of an exact match between requirements and products’ capabilities,
the cost of gap reduction is null;

In the case where a product does not fully meet a requirement and that re-
quirement is firm —i.e. it cannot be restated or relaxed — then the solution is to
determine the cost of adding functionally to cover the component’s deficiencies
with respect to the requirement;

In the case the component does not fully meet a requirement but that require-
ment is less rigid, one might negotiate a change in the requirement so that
the product’s capabilities and the requirement match more closely. The most
common situation is that by combining requirements’ adjustment and adding
functionality the deficiency can be addressed. The cost of employing this prod-
uct would then be calculated on the basis of both the cost of negotiation and
the cost of adding functionality;

In the case where the component’s capabilities fall outside the boundaries
established by the known requirements, we have the situation where (i) we
either accept the excess capability, (i.e. the capability is a benefit) and provide
it as a part of the system, or (ii) we must attempt to inhibit access to that
capability (i.e. the capability is a liability) from within the system. Indeed,
there are various degrees of acceptance or rejection that can be negotiated
as with the previous case. The costs in this case are calculated from the
cost of custom coding for hiding the unwanted capabilities, the cost of adding
beneficial functionality and the cost of adjusting the requirements.

99

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

3.6 Software Project Management for CBSD

A software project has two main activity dimensions: engineering and project man-
agement. The engineering dimension deals with building the system and focuses
on issues such as how to design, test, code, and so on. The project management
dimension deals with properly planning and controlling the engineering activities to
meet project goals for cost, schedule, and quality. Software project management can
be cut into a series of disciplines [135], among those we focus on: Effort estimation,
Quality management, Risk management and Change management.

3.6.1 Effort Estimation Model

Accurate estimates of the cost and time for software projects are crucial for better
project planning, monitoring, and control [114]. Project managers usually stress
the importance of improving estimation accuracy and techniques to support better
estimates.

Classically, the principal components of project costs are: total cost of ownership,
expertise and training costs, and effort costs (the costs of paying the project team)
[119]. The dominant one is the effort cost and unfortunately it is the most difficult
to estimate and control [34]. Moreover it has the most significant effect on the
overall costs since effort cost models are concerned with the estimation of effort in
staff/month, size of the systems, duration, productivity and resources to assign to
the project.

Typically, effort estimations are made up at minimum to get an idea of how long
the project will last and how much resources are needed to complete it in time. There
are several ways of estimating the effort. One way is to make a “guesstimation” by
making qualified people doing it following techniques such as expert panels, Delphi
or wideband Delphi [41].

Another way is to use models such as regression models to help calculate it.
Several estimating models have been developed over the years such as the Use Case
Points (UCP) [11], the Function Point Analysis [5], the Constructive Cost Model
(COCOMO) [30], and the SLIM model [137].

The COCOMO model is one of the mostly used model and it was originally
published in 1981 (COCOMO 81). By the mid-1990s, software engineering practices
had changed sufficiently to motivate a new version called COCOMO 1I, plus a num-
ber of complementary models addressing special needs of the software estimation
community [34]. COCOTS is an extension of COCOMO model for CBSD.

One of the key features of COCOTS is that estimates are done based upon the
classes of COTS components being examined. COTS components can usually be
sorted by basic function such as GUI builders, operating system, database, etc. The
authors found that grouping COTS components into classes is the most effective
way to gather calibration data [34].

60

3.6. SOFTWARE PROJECT MANAGEMENT FOR CBSD

COCOQTS is composed of four related sub-models, each one designed to capture
a different element of the total cost of using COTS components in building new
systems. These sub-models are:

1. Assessment sub-model is for estimating the effort on candidate COTS compo-
nent assessment;

2. Tailoring sub-model is for estimating the effort on COTS component tailoring;

3. Glue Code sub-model is for estimating the effort on the development and
testing any integration or “glue” code needed to plug a COTS component into
a larger system:;

4. Volatility sub-model is for estimating the effort on increased system level pro-
gramming due to volatility in incorporated COTS components.

3.6.2 Quality Management

The aim of quality management is to ensure that the quality expected and contracted
with clients is achieved throughout the project. For this purpose, software quality
models have been widely used for assessing software quality during software system
developments.

According to [82], “a quality model is the set of characteristics and the relation-
ships between them which provide the basis for specifying quality requirements and
evaluating quality”. Several quality models have been proposed in the literature,
e.g. McCall’s Quality Model [112], ISO 9126 Quality Model [81], Boehm’s Quality
Model [33, 32], Dromey’s Quality Model [62] and FURPS Quality Model [72]. These
models are intended to evaluate the quality of software in general; none of them is
dedicated to COTS-based systems. [23] argued that it is because they include char-
acteristics that are not necessarily applicable to COTS components. In this sense,
[23, 145, 139, 94] proposed quality models specific for COTS components.

[23] provide a quality model that can be used by the software architecture and de-
signers to evaluate the available COTS components to be integrated into the system
they are developing. It follows the ISO 9126 quality model [81] which is composed
of two layers; characteristic layer and sub-characteristic layer. A characteristic is
further refined into multiple sub-characteristics, and each sub-characteristic has a
set of associated metrics, where a metric has a formula used to compute the metric
value.

Table 3.7 shows the quality model proposed in [23]. It is basically the ISO 9126
quality model (see Table 3.6), where the Portability characteristic disappears as
well as the Fault tolerance, Stability and Analyzability sub-characteristics. Two new
sub-characteristics are added: Compatibility and Complexity. Moreover, other sub-
characteristics (shown in bold) have changed their meaning in this new context. The

61

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

Table 3.6: ISO 9126 quality characteristics (from [81]).

Functionality Suitability
Accuracy
Interoperability
Compliance
Security
Reliability Maturity
Recoverability
Fault tolerance
Usability Learnability
Understandability
Operability
Efficiency Time behavior
Resource behaviour
Maintainability Stability
Analyzability
Changeability
Testability
Portability Installability
Conformance
Replaceability
Adaptability

authors also stated that it is important to specify the moment in which a character-
istic can be observed or measured. According to [23], there are some characteristics
observable at runtime (e.g. Performance) and others observable during the prod-
uct life cycle (e.g. Maintainability). They also proposed the qualityattributes for
measuring these characteristics, where an attribute is a quality property to which a
metric can be assigned, as shown in Table 3.8 and Table 3.9). The metrics that will
be used for measuring these quality attributes are:

e Presence. This metric describes if an attribute is present in a component or
not;

e Time. This metric is used to measure time intervals;

e Level. This metric is used to indicate a degree of effort, ability, etc. It is
described by an integer variable that can take any of the following values: 0
(Very low), 1 (Low), 2 (Medium), 3 (High), 4 (Very high);

62

3.6. SOFTWARE PROJECT MANAGEMENT FOR CBSD

Table 3.7: Quality model for COTS components (from [23]).

Functionality Suitability
Accuracy
Interoperability
Compliance
Security
Compatibility
Reliability Maturity
Recoverability
Usability Learnability
Understandability
Operability
Complezity
Efficiency Time behavior
Resource behavior
Maintainability Changeability
Testability

e Ratio. This metric is used to describe percentages.

Similarly, [145, 139, 89] also proposed quality models for COTS components on
the basis of the ISO 9126 quality model. However, one of the main drawbacks of
these models is that they are based on ISO 9126 which is now out of date. The IS0
25000 (SQuaRE) [83] quality model is the successor of the ISO 9126 which is being
broadly used. It has broadened the system quality from 6 characteristics (in ISO
9126) to 8, incorporating the same quality characteristics with some amendments.

Since the ISO 25000 is the current quality standard and it has quality factors and
quality measures that do more justice to end user quality evaluation requirements,
the authors of [89] has upgraded their quality model “Q’Facto 10” (based the ISO
9126) to “Q’Facto 12”7 [90] on the basis of the ISO 25000. Table 3.10 shows the
Q’Facto 12 COTS component quality model.

Table 3.10: The Q’Facto 12 COTS component quality model (from [90]).

QF1 - Functionality Presence of preconditions and postconditions
Modularity

continued on next page

63

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

continued from previous page

Presence of standardization
Presence of certification
Correctness

QF2 - Security Access controllability

Data encryption

QF3 - Interoperability Data compatibility
Version compatibility
Software compatibility

QF4 - Reliability Persistence
Presence of fault tolerant mechanism
QF5 - Efficiency Disk capacity
Response time
QF6 - Maintainability Component stability
Migration ease level
QF7 - Portability Installability documentation

Installability complexity
Deployability documentation
Deployability complexity

Mobility

Replacement ease level

QF8 - Testability Test suit documentation

Proofs of previous tests
Component execution control
Component environment control
Component function feature control
Performance trace

Error trace

QF9 - Reusability Presence of domain abstraction
History of reuse

Presence of hardware independence
Presence of software independence
Accessibility

QF10 - Usability Training

Presence of demonstration
Presence of context sensitive help
Effort to configure
Understandability

continued on next page

64

3.6. SOFTWARE PROJECT MANAGEMENT FOR CBSD

continued from previous page

QF11 - Usability in use Customer satisfaction level
Effectiveness level

QF12 - Safety in use Software risk level
Commercial risk level
Operator risk level
Public risk level

On the other hand, [94] define a quality model called C-QM for evaluating COTS
components based on the characteristics of COTS components. C-QM consists of
four factors as high level quality attributes and each factor has a set of quality
criteria (see Table 3.11).

These quality models can be used to help defining the non-functional require-
ments during the COTS selection phase.

3.6.3 Risk Management

Risks are factors that may adversely affect a project, unless project managers take

appropriate countermeasures. According [114], risk is a major killer of projects and

as such it needs to be managed and controlled during the project life cycle.
Following [114], there are five basic phases within the risk management cycle:

1. Identify that a risk exists;

2. Analyze the severity of the risk;

3. Plan to handle the risk based on its impact and occurrence probability;
4. Mitigate the risk;

5. Track the risk. Once the risk has been mitigated to an acceptable severity
level, the risk should be tracked to ensure the continued control of the risk.

As stated in [102], risk management must be a continuous activity because it is
seldom that we can identify all risks at the beginning of the project. New risks can
be identified continuously. Moreover, the impact and occurrence probability of risks
can be evolved over time so that they need to be re-evaluated continuously.

In addition to the classical risks that exist with developing large scale systems,
the use of COTS components requires managers to modify their typical mitigation
strategies for some of the classic risks and develop new mitigation strategies for risks
that are particular to CBSD [141].

65

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

Table 3.8: Quality attributes for COTS components measurable at runtime (from
23)).

Accuracy Precision Ratio
Computational accuracy Ratio
Security Data encryption Presence
Controllability Presence
Auditability Presence
Recoverability Serializable Presence
Persistent Presence
Transactional Presence
Error handling Presence
Time behavior Response time Time
Throughput Integer
Capacity Integer
Resource behavior Memory utilization Integer
Disk utilization Integer

Several studies have been conducted on risk management of CBSD [138, 141, 29,
101]. Notably, [29] summarized lessons learned from CBSD university projects and
proposed corresponding risk-management strategies (see Table 3.12).

66

3.6. SOFTWARE PROJECT MANAGEMENT FOR CBSD

Table 3.9: Quality attributes for COTS components measurable during life cycle

(from [23]).
| Sub-characteristics | Attribute [Type |
Suitability Coverage Ratio
Excess Ratio
Service implementation cover- Ratio
age
Interoperability Data compatibility Presence
Compliance Standardization Presence
Certification Presence
Compatibility Backwards compatibility Presence
Maturity Volatility Time
Evolvability Integer
Failure removal Integer
Learnability Time to use Time
Time to configure Time
Time to admin Time
Time to expertise Time
Understandability User documentation Level
Help system Level
Computer documentation Presence
Training Presence
Demonstration coverage Ratio
Operability Effort for operating Level
Tailorability Level
Administrability Level
Complexity Provided interface Integer
Required interface Integer
Complexity ratio Ratio
Changeability Customizability Integer
Customizability ratio Ratio
Change control capability Level
Testability Start-up self-test Presence
Test suite provided Presence

Table 3.12: Risks in CBSD (from [29]).

Prototyping and business case analysis can help
to estimate the effect of change and correspond-
ing teagy effort and schedule needed. Win
Win negotiation among all stakeholders must be
maintained in each development phase.

R1. Requirement changes
and mismatches.

continued on next page

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

continued from previous page

R2. Many new non tech-
nical activities are intro-
duced in the Software En-
gineering Process.

Stakeholders with Domain expertise, Evaluation
expertise must be included in the evaluation pro-
cess.

R3.Miss possible COTS
candidates within the
COTS selection process.

Stay as broad as possible when doing the initial
searching for candidates.

RA4. Too much time
spent in assessment due
to too many requirements
and too many COTS can-
didates.

Identify the “showstopper” requirements and fil-
ter all the COTS candidates that do not meet
these during the initial assessment and then pro-
ceed for a more detailed assessment with the re-
maining COTS candidates.

R5. Might not include all
key aspects for establishing
evaluation criteria set.

Involve experienced, knowledgeable stakehold-
ers for reviewing evaluation criteria and weight
distribution judgements.

R6. Introducing new
COTS candidates is likely

and require replanning.

Develop a contingency plan in cases of addition
of a new COTS product. Identify the limits on
schedule and budget while making the introduc-
tion.

R7. Faulty vendor claims
may result in feature loss
and/or significant delays.

Detailed analysis provides greater assurance of
COTS characteristics with respect to vendor
documentation. Detailed assessment beyond lit-
erature review or vendor provided documenta-
tion should be performed in the form of hands-
on experiments and prototyping.

RS8. Ability or willingness
of the organization to ac-
cept the impact of COTS
requirements.

The project operational concept must identify
such risks and they must be conveyed to the
higher management.

R9. Difficulty in coor-
dinating meeting with key
personnel may result in sig-
nificant delays.

The key decision making personnel must be well
accounted for the project life cycles. The project
manager must make them aware of the approx-
imate time required to be spent with them dur-
ing the process of assessment etc. The decision
making personnel must be kept as minimal as
possible.

continued on next page

68

3.6. SOFTWARE PROJECT MANAGEMENT FOR CBSD

R10. Inadequate vendor
support may result in sig-
nificant project delays.

continued from previous page

The licensing of COTS products must account
for vendor support details. In case of contract-
ing labour the developers with experience in us-
ing the COTS must be selected.

R11. COTS package in-
compatibilities may result
in feature loss and signifi-
cant project delays.

COTS integration issues must be considered
during assessment. The number of COTS prod-
ucts must be kept as minimal as possible.

R12. Added complexity of
unused COTS features.

The number of unused features could be iden-
tified and the added complexity because of the
presence of such features must be calculated dur-
ing COTS assessment.

R13. Overly optimistic
expectations of COTS
quality attributes.

Significant quality features must be tested be-
fore selecting COTS products. Special testing
packages may be used. Evaluation could be car-
ried out at sites where the COTS is actually be-
ing used.

R14. Overly optimistic | A most likely COTS package learning curve
COTS package learning | must be accounted for during planning the
curve. schedule.

R15. A version upgrade | Ensure that the features used to implement the

may result in re-tailoring of

COTS package.

capabilities still exist in the new version before
the version upgrade.

3.6.4 Organizational Change Management

Organizational change is inevitable when working on information system develop-
ment, especially with COTS-based system development. Organizational change
management is another critical factor that must be addressed by the project manager
[173].

According to [123], organizational change management is the process of devel-
oping a planned approach to change in an organization. The objective is typically
to maximize the collective benefits for all people involved int the change and to
minimize the risk of failure of implementing the change. This involves identifying
organizational units and employees within the company that will be affected by
the intended system, and ensuring that those employees understand and manage
the company’s perception of and responses to the changes that will occur after the
implementation.

Affected employees may resist change introduced by the new system for the

69

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

Table 3.11: C-QM quality model (from [94]).

Functionality Commonalty
Suitability
Completeness
Reusability Commonality
Modularity
Customizability
Comprehensiveness
Maintainability Modularity

Interface abstractness
Changeability
Conformance Standard conformance
Reference model conformance

several reasons [43]:
e The change is not communicated to the affected people;
e They do not understand the reasons;
e They do not see the benefit to them,;
e They do not have the skills and knowledge to handle the change.

Preparing for organizational change will facilitate a smoother implementation of
the system and for a more effective use of the system once in use. By establishing
an organizational change management plan as part of the project management, we
can expect the following benefits [43]:

e Less resistance to the new system and the new business processes;

e Fewer complaints and negative attitudes toward the new system:;

e More positive attitudes from the end-users;

e More effective use of the new system.

Creating an effective organizational change management plan involves [123]:

1. Identifying the groups of institutional stakeholders that will be affected by the
changes introduced by the new system:;

70

3.7. CHAPTER SUMMARY

2. Identifying how each group will be affected (e.g. new roles, structures, pro-
cesses);

3. Identifying the new skills and behaviors that will be required by each group;

4. Determining the barriers, issues, and types of resistance that we could face
with each group;

5. Defining change management interventions to handle these barriers and issues
of each group and regularly reviewing and updating the plan.

3.7 Chapter Summary

This chapter has reviewed the state of the art on CBSD. Firstly, it presented the
characteristics of COTS components by providing an overview of the different defi-
nitions of COTS and the different levels of component granularity.

Next, it described some relevant CBSD life cycle models including the sequential
model, the V-Model, the Y-Model and the Evolutionary Process for Integrating
COTS which is a modified from of RUP for CBSD.

Then, it introduced some representative COTS selection approaches on the basis
of the different aspects of COTS selection that they have addressed. More precisely,
it presented the OTSO COTS selection approach that has been considerer the first
widespread COTS selection and that provides the basic structure of COTS selection
methods; some relevant requirements-driven COTS selection approaches including
PORE, CRE, and CARE; mismatch-handling aware COTS selection approach; mul-
tiple COTS selection approach; and social-technical approach to COTS evaluation.

This chapter also exposed some relevant approaches that have been used in
CBSD including different evaluation strategies that have been used during the COTS
selection, i.e. progressively filtering, puzzle assemble and keystone identification;
the three main decision making techniques for COTS selection, i.e. weighted score
method, analytic hierarchy process, and gap analysis approach; software project
management for CBSD, i.e. risk management, quality management, effort estimation
models, and organizational change management.

71

CHAPTER 3. COMPONENT BASED SOFTWARE DEVELOPMENT

72

Part II1

Architectural Design for
COTS-Based System
Development

73

Chapter 4

Architectural Foundations

In this chapter, we present the conceptual foundations of the proposed architectural
design for CBSD. We firstly introduce the commercial off-the-shelf (COTS) com-
ponent specification that we adopt in this thesis and that serves as a basis for our
methodology. Then, we present the different characteristics of components integra-
tion and specify the characteristics adopted by our methodology. We demonstrate
the advantages of using of agent-oriented approach for systems integration.

4.1 A Characterization for COTS Components

Among the different COTS definitions that we can find in the literature (see Section
3.1.1), in this thesis we follow the SEI definition [115]:

“A COTS product is a [software] product that is:
1. sold, leased, or licensed to the general public;
2. offered by a vendor trying to profit from it;

3. supported and evolved by the vendor, who retains the intellectual property
rights;

4. awvailable in multiple, identical copies; and
5. used without source code modification by a consumer.”

Therefore, we consider a COTS-Based System (CBS) as a computer based
application that integrates one or more COTS products, while CBSD as
the processes that lead to the development of a CBS. Specifically, our re-
search focuses on the development of large scale distributed business systems with

75

CHAPTER 4. ARCHITECTURAL FOUNDATIONS

the use of COTS software components. The systems aimed to be built with the
methodology developed in this thesis target coarse-grained COTS components.
In this sense, for the rest of this thesis, when referring to a COTS com-
ponent, we mean a COTS system-level component, which corresponds to
an information system (see Section 3.1.2 for component granularity).

Since COTS components are bought from the marketplace and not developed
in-house, COTS components’ users normally do not know how each of the system-
level components are built. Therefore, in our methodology, COTS components are
not described from the point of view of their internal compositions but rather from
their externals. According to [78], there are two main ways in which a system-level
component can be connected to its externals: a black-box approach or a white-box
approach.

e Black box. An interface to the system-level component is provided through
a specific access artefact, of which there are two flavors: a gateway (see Figure
4.1) or an interoperability adapter (see Figure 4.2). The term gateway is used
to identify an interface implemented at development-time, while an interop-
erability adapter is the implementation of an interface after having deployed
the system. An interoperability adapter may be specified and implemented by
an organization different from the one that developed the original system. A
gateway will totally hide internals of the system, and so a client of the gate-
way will be unable to determine whether the system is composed from business
components or built as a monolithic system;

|
o System > Order |
| | Gateway Manager |
|
|
I »| Order |
|
|
: > Item Customer | |
| |
| Address Currency :
| Book Book |
|
I Notes Number |
[Generator |
L |

Figure 4.1: Example of a system interface provided by a gateway (from [78]).
e White box. An effective interface to the system-level component is provided

by allowing direct access to its constituent lower level components (business
component). This is done by exporting a selected set of business component

76

4.2. AN ONTOLOGY FOR COTS COMPONENT REPRESENTATION

—| I

0 Interperability | > Order |
Adapter | Manager |
| |

J »| Order I

| |

} »{ Item Customer | |

| |

: Address Currency :

| Book Book |

| |

| Notes Number |

| Generator |

1 U U R G RIS U U I I I —— -

Figure 4.2: Example of a system interface provided by an interoperability adapter
(from [78]).

interfaces so as to give them system-external visibility. Such interface will
normally require a set of additional constraints to be imposed on them for
security and other reasons. This may, in turn, demand specific system-external
business component interfaces to be specified and implemented. In Figure 4.3
such constrained interfaces are indicated by the letter “C”.

I
I
=N Order
C
© | = Manager :
I
I
o—1 (C)—| Order |
I
I
O : © ltem Customer | |
I
I
| Address Currency :
| Book Book I
| Numb |
| Notes umber
| Generator :

Figure 4.3: Example of exporting constrained business component interfaces (from
[78]).
4.2 An Ontology for COTS Component Representation

We have defined a component metat-model that illustrates the relevant elements
of a COTS component and their relationships using a UML class diagram. This

77

CHAPTER 4. ARCHITECTURAL FOUNDATIONS

model is adapted from the component model defined in [56] for representing the
fine-grained component (i.e. distributed component), which focuses only on the
technical descriptions of a component (see Figure 4.4).

———> Component

1
+Q

1

*
Name |-1—1-<>| Interface
1 1
PreCondition

10y

*

Parameter |o——

/\

OutParameter

Figure 4.4: The component meta-model (from [56]).

As evoked earlier, we focus on the coarse-grained COTS components (i.e. system-
level component) and the ontology for describing the COTS component is defined
from the point of view of its external. We suppose each component to be pro-
vided with its gateway. Figure 4.5 depicts our component meta-model which is
structured as follows:

Each component possesses general information that allows the customers to
identify and make a selection of the available components in the marketplace.
This general information includes information attributes like the product name,
category, domain, type, version, vendor, cost, and programming language;

Each component is associated with a set of features that it provides. Fea-
tures, based on the definition found in [91], are any prominent and distinctive
characteristics of a system that are visible to users. A component user nor-
mally selects a component according to how well the features provided by the
component meet the requirements;

Each component will be also evaluated according to its quality which is de-
scribed through a set of quality characteristics;

Each quality characteristic is measured through its quality attributes;

Each component is connected to the external environment through a system
gateway;

78

4.2. AN ONTOLOGY FOR COTS COMPONENT REPRESENTATION

A system gateway consists of a set of named interfaces;
e An interface is composed of a set of named operations;

e Each operation has zero or more input and output parameters and a syntactic
specification associates a data type with each of these parameters;

e Each operation is also associated with a set of preconditions and postconditions.
Preconditions are assertions that the component assumes to be fulfilled before
an operation is invoked. Postconditions are assertions that the component
guarantees will hold just after an operation has been invoked, provided the
operation’s preconditions were true when it was invoked.

1 1 1 .
Quality
fulfils ?1
1 * *
General System Quality
Information Gateway Characteristic

01 1
*
N k
1 1 Quality
Name |—<>| Interface Attribute
1 1 1
1<> PostCondition

o Paameter o—{ Type |
1 A

OutParameter

Figure 4.5: Our component meta-model.

In our methodology the COTS components are described at two levels of ab-
straction. General Information, Feature and Quality provide high level descriptions
of a component, which are necessary during the COTS selection phase. On the other
hand, System Gateway provides technical descriptions of a component, which are
useful during the COTS integration phase. During the development process, the
project team will seek for information about each COTS component according to
this ontology.

79

CHAPTER 4. ARCHITECTURAL FOUNDATIONS

4.3 Components Integration: Definition and Character-
istics
According to [78], system-level components to be integrated can be:

1. Two independently developed systems that do not allow any internal modifica-
tion and that must have a minimal set of contact points. In this case, whether
the internal of the two systems are implemented in exactly the same way or
in totally different languages and technology should not matter;

2. Two independently developed systems built using a common set of techniques,
infrastructure, business components, application architecture, and also ad-
dressing common reduction in development costs, while still aiming to have a
minimal set of contact points.

These two meanings for integration are two different models that achieve similar
ends. Our methodology is nevertheless based on the first model in which
system-level components constituting the system under development may
be bought from different vendors. These components interact with each
other if necessary to address the information processing needs of the
multiple end users.

Purchase Order Management Invoice management

r—-r--"-—-=---"=-"=-"=—-=-=-] r—-r--"-—-=---"=-"=-"=—-=-=-]
: Purchase Order | : Invoice |
| Manager : | Manager :
| | Purchase I | . |
| Order <:>1 Invoice |
I I
| Vendor : | Vendor :
' | ' |
It
: Mo : Address Currency [
[Book Book [
| Address Currency I | I
| Book Book I | Not Number I
otes
| I | Generator I
| Notes Number | | I
| Generator | | |

Figure 4.6: Example of an integrated system (from [78]).

The components constituting the system interact with each other according to
a small number of styles. The three main interaction styles between system-level
components are as follows [78]:

e Master-slave collaboration. In this style of collaboration, one system—
the master— is clearly the initiator of all communication and the only active

80

4.3. COMPONENTS INTEGRATION: DEFINITION AND
CHARACTERISTICS

partner, while the other system—the slave—is a passive partner and a service
provider. The master initiates all communications and all requests to the slave.
In Figure 4.7, the exchange between master-slave system-level components
is shown as a unidirectional exchange. In reality, in most cases, there is a
requirement for both systems to be able to initiate a communication;

Order Inventory Billing

management management

Figure 4.7: Example of a master-slave collaboration (from [78]).

e Coordinated collaboration. In this style of collaboration, illustrated in
Figure 4.8, all exchange of information between two or more system-level com-
ponents is done through a coordinating entity. The coordinating entity is
called Component Manager in the figure;

Component
manager

el

Order Inventory Billing
management management

Figure 4.8: Example of a coordinated collaboration (from [78]).

e Peer-to-peer collaboration. In this style of collaboration, the participating
system-level components can freely and directly invoke each other and initiate
an exchange of information, as illustrated in Figure 4.9. This style enables
maximum collaboration flexibility, but it is also the most complex and expen-
sive to develop, test, deploy, manage at run-time, and maintain. Peer-to-peer
collaboration is very similar to human collaboration and it is intellectually
very appealing. By analyzing an ideal interaction between two systems, we

81

CHAPTER 4. ARCHITECTURAL FOUNDATIONS

can deduce that the communication will often need to be bidirectional. Any of
the two systems may need to receive information or ask for information from
the other.

Order

Billing
management

)

Inventory Advanced
management planning system

Figure 4.9: Example of a peer-to-peer collaboration (from [78]).

These three main interaction styles between system-level components may be
used jointly in a complex system. Figure 4.10 shows an example where the three
interaction styles are used:

1. The user may want to perceive the system constituting of a set of collaborat-
ing system-level components as a whole system through a single user interface,
which is sometimes called a federation desktop. This is an example of coordi-
nated communication;

2. At the same time, behind the scenes, the different systems may need to commu-
nicate directly to each other. This may be done using a peer-to-peer interaction
style;

3. One or more systems may also need to contact a remote system for some
point-to-point communication. In the figure, the order management system
connects to a bank in order to update the organization’s own accounts. This
is an example of a master-slave interaction style.

Building such a complex system with the use of COTS components is the focus of
our thesis. Hence, our methodology proposes a system architecture for implementing
a large and complex system where the conditions mentioned above do exist. The
proposed system architecture is described in the following chapter.

82

4.4. AN AGENT-ORIENTED APPROACH TO SYSTEMS INTEGRATION

Federation desktop

i B

Planning | Order | Inventory
engine management management
External

bank system

Figure 4.10: Example of a mixing styles (from [78]).

4.4 An Agent-Oriented Approach to Systems Integra-
tion

A popular integration approach is based on the object-oriented (OO) programming
paradigm that can be traced back to the 1960s and has been used in various applica-
tion domains for about two decades [13, 65, 66, 67, 88]. It emphasizes programming
efficiency by stressing the modularity of data structures and code sharing. It uses
a centralized or tightly- coupled integration approach. It has been widely used for
systems integration, particularly after the development and deployment of three
major distributed object standards: Common Object Request Broker Architecture
(CORBA) by the Object Management Group [68], Distributed Component Object
Model (DCOM) by Microsoft [58], and Java/Remote Method Invocation (Java/RMI)
[61]. These OO frameworks provide well-designed component/object models, and
integration mechanisms supporting interfaces to link components/objects together.
However, one of the main drawbacks of these frameworks is the absence of dynamic
allocation during the functional execution. Indeed, in these frameworks, the inte-
grated components are statically bound, and the collaboration mode among them
is fixed so that it cannot be adjusted and modified especially when the system is
running. Therefore, these frameworks are unable to adapt to frequently changing
requirements and environments.

With the emergence of agent technology, many researchers have been probing
into agent-based solutions for systems integration and some reached the conclusion
that the agent technology provides a natural way to realize integrative business
information systems [95]. Moreover, as argued in [136], the use of agent technology
within middle-ware has several advantages, i.e.:

1. A software agent has social ability [55]. An agent could communicate with
human users and accept the delegated tasks. Furthermore, it is also a com-
municative program that interacts with other programs/agents in speech-acts

83

CHAPTER 4. ARCHITECTURAL FOUNDATIONS

[156], which means communication similar to human talk. A complex task
could be completed through the cooperation of software agents;

2. If necessary an agent can be mobile, with the ability to migrate from one host
to another during its execution. From the distributed systems point of view,
a mobile agent is a program with a unique identity that can move its code,
data and state between networked machines. To achieve this, mobile agents
are able to suspend their execution at any time and to continue once residing
in another location [20]. Some studies [169] have shown that mobile agents
could reduce the network load. The main reason for this is that mobile agents
communicate with the applications locally and the communication links can
be disconnected after migration;

3. A software agent with intelligent abilities is potentially suitable for handling
sophisticated distributed computations. As argued in [86], it will be of benefit
for engineering complex software systems using agent technology.

OO development is thus not the only efficient paradigm for constructing large-
scale software systems. Software agents, which are actually intelligent software ob-
jects, could have better interaction ability than traditional objects and therefore suit
for building distributed systems. This motivates us to apply agent technology for
systems integration within our methodology.

4.5 Chapter Summary

This chapter has presented the conceptual foundations of the architectural design for
CBSD proposed in this thesis. It introduced the COTS component specification that
we adopt in this thesis. It serves as a basis for our methodology in the sense that each
COTS component has to meet this specification. Then, it presented the different
characteristics of systems integration and specified the characteristics adopted by
our methodology. Finally, it described the reasons behind the use of agent-oriented
approach in our methodology for COTS integration.

84

Chapter 5

An Agent-Driven Integration
Architecture

This chapter focuses on our agent-based system architecture. Section 5.1 describes
the proposed system architecture. Section 5.2 shows the possibility of implementing
our proposed MAS using the JADE agent framework.

5.1 Integration Architecture

This section presents first the architectural layers of our integration architecture as
well as the middleware composition. An architectural description of the MAS layer
is then given.

5.1.1 Vertical Architectural Layers and Middleware Composition

Figure 5.1 presents the proposed system architecture. Logically, it composes of three
vertical architectural® layers:

e The Graphical User Interface (GUI) layer is the top layer that provides users
with a means to interact with the system. This GUI layer constitutes the
federation desktop of the system. We propose to use the web technology to
build it so that it can be accessed via browsers in a standardized way from
anywhere;

e The MAS layer is the middle layer that is in charge of the functional decompo-
sition of the client/user requests and manages the different interfacing aspects
with COTS components;

!Note that in the context of this thesis unless explicitly specified, when we use to the term
“architecture” we refer to the architecture of the MAS located in the middle layer not to the three
layered vertical architecture.

85

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

ep € €1
| |

MAS Y

Gateway
agent

w8

Component 1 Component 2 Component n

Figure 5.1: Vertical system architecture.

e The Component layer is the lowest-level layer that composes of a set of compo-
nents capable to execute operations requested by agents. In the context of this
thesis, agents can interface with COTS components through the components’
gateways.

Specifically considering the MAS layer, we propose a MAS design compliant
with the FIPA specification [149]. Figure 5.2 defines a meta-model of the main
parts constituting our MAS in the form of a UML-based class diagram [151], those
parts are:

e Agent Platform (AP): Following FIPA specifications [149], the MAS needs
a platform for efficient and stable interaction between intelligent agents. An
AP provides the physical infrastructure in which agents are deployed. It con-
sists of FIPA agent management components including the Agent Management
System(AMS) and the Directory Facilitator (DF), the agent themselves and
any additional support software. A single AP may be spread across multiple
computers, thus resident agents do not have to be co-located on the same host;

e Agent Management System (AMS): The AMS is a FIPA agent manage-
ment component. It is a mandatory component of an AP and is responsible for
managing the operation of an AP, such as the creation and deletion of agents,
and overseeing the migration of agents to and from the AP. Each agent must
register with an AMS in order to obtain an Agent Identifier (AID) which is

86

5.1. INTEGRATION ARCHITECTURE

DEF 0..n . Agent o 1 AMS
Platform
. 1 1
contains
0..n hosts

AgentService contains

Description [.0..n

\‘ 0..n 0..n
uses_a 1| Agent

MTS K-----=2=2 T 27| A%t @1 b ascription

-

--Uses_a 2N uses &~ - - — :
Rule Engine Scripting Engine

I I |
Gateway | | User || Mediator | | Wrapper

Figure 5.2: Meta-model of the main MAS parts.

then retained by the AMS as a directory of all agents present within the AP
and their current state (e.g. active, suspended or waiting);

Directory Facilitator (DF): The DF is an optional component of an AP
providing yellow pages services to other agents. It maintains an accurate, com-
plete and timely list of agents and must provide the most current information
about agents in its directory on a non-discriminatory basis to all authorized
agents. An AP may support any number of DFs which may register with one
another to form federations. The main functions of DF are to manage the
service subscription and unsubscription of agents and respond to the service
search requests;

Message Transport Service (MTS): The MTS is a service provided by an
AP to transport FIPA Agent Communication Language (ACL) [149] messages
between agents on any given AP and between agents on different APs;

Rule Engine: The rule engine is used to evaluate and execute the rules
associated with agents’ adaptive capabilities. It is integrated into the AP in
order to build adaptive agents;

Scripting Engine: In our proposal, some parts of agents’ capabilities espe-
cially the integration logics can be written in scripting language so that they
can be changed dynamically. The scripting engine is integrated into the AP
to execute these scripts;

Agent: An agent is a computational process that inhabits an AP and typically
offers one or more computational services that can be published as a service
description. In our MAS, there are four types of agents:

87

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

— Gateway agent. This agent is the access point of the GUI layer to the
MAS;

— User agents. Each user of the system has an user agent that represents
him/her. User agents can autonomously perform actions that the users
should do;

— Wrapper agents. Each component that constitutes the system is agen-
tified into a Wrapper agent. The Wrapper agents manage the states of
the components they are wrapped around, invoking them when neces-
sary. The Wrapper agents are thus in charge of managing the different
interfacing aspects with COTS components;

— Mediator agent. This agent is designated to accomplish the user requests
sent from the Gateway agent. It realizes the request by invoking the
relevant services offered by the agents which play the Service provider
role and sends the response back to the Gateway.

The agents’ internal structure follows an agent model (see Section 5.1.2) in which

the agents’ intelligence resides. This intelligence is issued of the following properties:

e Autonomy. Our agents can decide whether to perform an action on request

from another agent. When an agent receives a request, it will indeed check
whether it can reply to this. If it cannot, it will send a negative answer to the
request sender;

Sociability. Our agents can interact with users or other agents. They commu-
nicate with each other through message exchanges;

Pro-activity. Our agents do not simply act in response to the received messages
from the other agents. Each agent can take the initiative to perform a given
task in order to respond to the changes that occur in its environment;

Adaptivity. In our proposal, it is possible to create agents’ capabilities which
can be changed while the system is running. This allows them to adapt to its
environment which is continuously evolving.

Conceptual foundations for implementing these properties are presented in the

following section.

5.1.2 Agent Model

Figure 5.3 depicts the relevant elements of an agent and their dependencies using a
UML class diagram. The model is structured as follows: an agent has an associated

MessageQueue, a BeliefBase, a ServiceBase, and a set of Capabilities.

88

5.1. INTEGRATION ARCHITECTURE

MessageQueue and ACLMessage. The message queue is a sort of mailbox
associated to every agent: it stores all the ACL messages sent by other agents
and that have to be read by the agent. This allows agents to be sociable;

BeliefBase and Belief. A belief base is a set of beliefs. Beliefs represent the
agent’s perception of the world, what the agent know about itself and the
external environment. Agents can take actions according to their beliefs. This
allows agents to be pro-active;

ServiceBase and Service. A service base contains a set of services offered by
the agent to the others. A service is an act or performance offered by one
party to another. It is described in term of its properties, i.e. type, name, etc.
With the ServiceBase and BeliefBase, agents can know and decide what to do
with other agents’ requests. This allows agents to be autonomous;

Capability, Operation and Component. A capability represents a task that an
agent can carry out. It composes of a set of operations to be executed with the
aim of achieving a specific goal. Some operations are furnished by components;

Service and Capability. Each agent service is associated with an agent capa-
bility but not vise-versa. Some agent capabilities do not need to be exposed
to other agents, so they are not associated with any agent services;

Capability and Rule. Some capabilities are based on the activation of different
logical rules. These logical rules are written in a scripting language. Working
with rules helps keeping the logic separated from the application code; it can
be moved outside the code. Moreover, these rules can be adjusted and modified
when the system is running. This allows agents to be adaptive.

In the system integration process, the communication and collaboration among

agents enables the integration of components in the MAS whose architectural de-
scription is described into the next section.

5.1.3 MAS Architectural Description

This section aims to provide an architectural description of the MAS using i* [171]
and Agent-UML (AUML) [69] models. Those will be structured into four comple-
mentary dimensions:

e The social dimension identifies the relevant agents in the system and their
intentional interdependencies;

e The rationale dimension identifies the capabilities provided by agents to realize

the intentions identified by the social dimension. This dimension describes
what each capability does;

89

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

< *
Belief |1 pojief
Base
ll
Service|; [, 1[Message] o ACL
Base * Agent e Queue [® Message
e L
Service [9-:1 1 Capability 1. 0.% Rule

L

Operation [0--* 0.1 component

Figure 5.3: Agent model.

e The communicational dimension models the temporal message exchange be-
tween agents;

e The dynamic dimension models the operational (step-by-step) workflows of
agents in the system.

The architectural description goes beyond a pure system design by incorporat-
ing a description over multiple complementary dimensions illustrating the different
aspects of the MAS architecture for components integration. The description of the
MAS architecture presented in the following sections is generic but can be adapted
to a particular business logic issued of a project specific domain model.

5.1.3.1 Social Dimension

Figure 5.4 illustrates the social dimension of the proposed MAS through an high
level view of its architecture using the i* framework. The Gateway agent depends
on the Mediator agent to accomplish user requests. The Gateway agent will send
user requests to the Mediator agent and wait for the responses from it.

In addition, as depicted in Figure 5.4, there are two roles of agents: Service
consumer and Service provider. In our case, the Mediator and the User agents
play the Service consumer role while the Wrapper agent can play both roles. This is
because a Wrapper agent may need to invoke services provided by other agents. The
Service consumer agents depend on the Service provider agents to accomplish
the services they offer. The Service consumer agents will send requests to the
Service provider agents and wait for the responses from them.

90

5.1. INTEGRATION ARCHITECTURE

Service
provider

User request Request

User request’s

response User Response

Wrapper

o\ay®
Legend:

Role Agent Goal Resource Task Dependency link

Figure 5.4: Social dimension of our MAS architecture.

5.1.3.2 Rationale Dimension

The rationale dimension aims at modeling agent reasoning. In this dimension, we
identify capabilities of each agent that can be used to achieve the intentional de-
pendencies. Capabilities are listed in Table 5.1. Each row presents a capability: its
name, its informal definition, and the agents the capability belong to.

When receiving a user request from the GUI layer, the Gateway agent converts
it into a ACL message with the GetUserRequest capability and sends it to the
Mediator agent with SendUserRequest capability. The Gateway agent waits for
the user request’s response from the Mediator agent and send it to the GUI layer
through the GetUserRequestResult and SendUserRequestResult capabilities.

Mediator, User and Service provider use the GetRequest capability to get
the request from other agents. Upon the reception of a request, these agents analyze
whether they can realize it with the AnalyzeRequest capability. If they can, they
will load and execute the relevant integration script through the RealizeRequest
capability. During the request realization, they may need to search for the relevant
Service provider agents offering the services needed to accomplish the request
with the SearchServiceProvider capability. If there is not any Service provider
agent providing a service needed, they handle this negative answer. Otherwise, they
send request to the Service provider agents and wait for their responses with the
SendRequest and GetSubResult capabilities. They use the SendResult capability
to send the request’s response to the request sender agent.

ServicesRegister, ServicesDeregister and ServicesUpdate are three spe-
cific capabilities that belong to Service provider agent. Each Service provider
agent uses these capabilities for registering and deregistering descriptions of services
it offers with the DF.

91

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

Table 5.1: Capabilities of agents.

Get the user request from the
GetUserRequest Gateway
GUI layer
Send th t to th
SendUserRequest en. © USEr Tequest 1o tae Gateway
Mediator agent
GetUserRequest- Get the user request’s result
. Gateway
Result sent from the Mediator agent
SendUserRequest- Send the user request’s result
Gateway
Result to the GUI layer
Get the request sent from the | Mediator, Service
GetRequest .
other agents provider, User
. Mediator, Servi
AnalyzeRequest Analyze the received request ° 12'1 or, wervice
provider, User
Realize th t by loadi
. catize Bhe tequest by foading Mediator, Service
RealizeRequest and executing the relevant in- .
. . provider, User
tegration script
SearchService- Search for the corresponding | Mediator, Service
Provider Service provider agents provider, User
Send request to the Service | Mediator, Service
SendRequest . .
provider agents provider, User
CotSubResult Recmjd result Provided by the Medie.ltor, Service
Service provider agents provider, User
; - -
SendResult Send the request’s response to Medle.ator, Service
the Gateway agent provider, User
Register descriptions of ser-
S i Regist . . . S i id
ervicestogister vices that it offers with the DF | ©o '+ C¢ Provider
ServicesDeregister Deregister descriptions of ser- Service provider
& vices that it offers from DF P
Update descriptions of ser-
S i Updat . . . S i id
ervicestpcate vices that it offers with the DF | ~ o @~ o Providaer
It is an abstract capability to))
. . Service provider,
ProactiveAction represent the autonomous ac- User
tions of the agent

In addition, User and Service provider agents can have autonomous actions.
We define ProactiveAction capability to represent the capability that implements
these actions. It is to be implemented by the developers according to the system
under development context.

92

5.1. INTEGRATION ARCHITECTURE

5.1.3.3 Communicational Dimension

The communicational dimension models, in a temporal manner, the dynamic be-
havior of the software system, depicting how agents interact by passing messages.
Graphically, a AUML sequence diagram is used to represent the message exchange
between agents.

Figure 5.5 shows the communication diagram of our MAS architecture for the
user request realization. When the Gateway agent forwards a user request (User-
Request) to the Mediator agent, the Mediator agent receives and analyses the
request. In case that the Mediator agent cannot answer the request, it sends a
failure message (UnknownRequest) to the Gateway agent. Otherwise it sends a
message (FindServiceProviderRequest) to the DF to find the relevant Service
provider agents for each service needed to realize the request. The DF will answer
with (Null) if there is not any Service provider agent for the requested service.
Otherwise, the DF will answer with information of the relevant Service provider
agents (ServiceProviderInformation). Respectively, the Mediator agent will send
a failure message (ServiceNotFound) to the Gateway agent or send a (sub)request
((Sub)Request) to the relevant Service provider agent. There are two possi-
ble answers from the Service provider agent: a negative (Failure) or a positive
((Sub)Result). If the Mediator agent gets a negative answer from the Service
provider agent, it will send a failure message (RequestFailure) to the Gateway
agent. Otherwise, when the Mediator agent completes the user request realization,
it will send the result (UserRequestResponse) to the Gateway agent.

Figure 5.6 illustrates the communication diagram of our MAS architecture for the
interaction between the Service consumer and Service provider agents. It be-
gins with the Service consumer agent sending a message (FindServiceProvider-
Request) to ask the DF to find the relevant Service provider agents for the service
needed. The DF will answer with (Null) if there is not any Service provider agent
found for the requested service. Otherwise, the DF will answer with information of
the relevant Service provider agents (ServiceProviderInformation). In the
second case, the Service consumer agent will send the request (Request) to the
relevant Service provider agents. There are two possible answers from a Service
provider agent: a negative (Failure) or a positive ((RequestResponse).

5.1.3.4 Dynamic Dimension

The dynamic dimension models the internal logic of a complex operation. Graph-
ically we use the dynamic diagram [96] which is an extended version of a UML
activity diagram for agent-oriented systems, to model the process.

In a dynamic diagram, each agent constitutes a swimlane of the diagram. The
capability is represented in a round-corner box and placed in the swimlane corre-
sponding to the agent that it belongs to. An internal event is represented by a

93

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

v I

UserRequest i i

E [Else] [Known] E E
| Loop) l !
i UnknownRegquest [Failure = false and HasAnotherRequest = true] i
[} H FindServiceProviderRequest " E
i T |
; ﬁ [Else]Null |
: ServiceNotFound j !
P [Found]ServiceProviderInforéatibn i

(Sub)RequestSent L

[Else]Failure

A

A

RequestFailure

T e

[OK](Sub)Result

A

[Failure = false]UserRequestResponse

_____1:“___________
et mm Y M

Figure 5.5: Communication diagram for the user request realization.

dashed arrow and an external event by a solid arrow. An event may be handled by
alternative capabilities that are enclosed in a box. Synchronization and branching
are represented as usual.

The dynamic diagram relating to the user request realization is depicted in Fig-
ure 5.7. When the Gateway agent gets a user request from the GUI layer (User-
RequestReceived), it converts the user request into a ACL message and forwards
it to the Mediator agent (UserRequestSent). Upon the reception of the request
(RequestReceived), the Mediator agent analyses it in order to define whether it
can answer the request or not. In case that the Mediator agent cannot answer
the request, it sends a failure message to the Gateway agent. Otherwise it asks
the DF for the relevant Service provider agents for each service needed to realize
the request. If there is not any Service provider agent for the requested service,
the Mediator agent will send a failure message to the Gateway agent. Otherwise,
it sends a (sub)request to the relevant Service provider agents ((Sub)Request-
Sent). When receiving a request from the Mediator agent (RequestReceived), the

94

5.1. INTEGRATION ARCHITECTURE

Service consumer DF Service provider

FindServiceProviderRequest |

| [Else]Null

=

_[Found]ServiceProviderinfor ation

[Request i _
[: P Failure i
[j‘ RequestResponse !

Figure 5.6: Communication diagram for the interaction between the Service
consumer and Service provider agents.

Service provider analyzes whether it can response the received request or not. In
case that it cannot, it sends a failure message to the Mediator agent. Otherwise,
it realizes the request and sends the answer to the Mediator agent. There are two
possible answers from the Service provider agent: a negative if there is a failure
occurring during the request realization or a positive. If the Mediator agent gets a
negative answer from the Service provider agent, it will send a failure message to
the Gateway agent. Otherwise, the Mediator agent sends the result to the Gateway
agent.

Figure 5.8 illustrates the dynamic diagram for the interaction between the Service
consumer and Service provider agents. Each time that a Service consumer
wants to invoke a service offered by other agents, it asks the DF for the relevant
Service provider agents for each service needed. If there is not any Service
provider agent for the requested service, the Service consumer agent handles
this negative answer. Otherwise, it sends a (sub)request to the relevant Service
provider agents ((Sub)RequestSent). When receiving a request from the Service
consumer agent (RequestReceived), the Service provider analyzes whether it
can response the received request or not. In case that it cannot, it sends a failure
message to the Service consumer agent. Otherwise, it realizes the request and

95

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

Gateway

Mediator

Service provider

|

IUserRequest

Received
SendUserRequest

UserRequest
Sent

4

SendUserRequestResult

Resu|
GetUserRequestResult

» GetRequest

RequestReceived
AnalyseRequest

I
Loop J 1

[Failure = falée and HasAnotherReque;
I

|
SearchServiceProvider
|

[El_sei] X [F_ound]
|
|

t = true]

ent

v
g
:SendRequesjt (Sub)RequestS

GetSubResult |«

»{ GetRequest

| Request
! Received

AnalyzeRequest
[Else i

[Known]

A/

RealizeRequest

(Sub)Result
Sent

[—-
|
|
|
|
I
|
I
I
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
I
|
|
|
|
|
T

v
SendResult

@

> —_—
Internal event External event

Capability

Branch Synchronization bar

Figure 5.7: Dynamic diagram of the user request realization.

sends the answer to the Service consumer agent. A negative answer is sent if there

is a failure occurring during the request realization.

96

5.2. IMPLEMENTATION MODEL

Service consumer Service provider

I
SearchServiceProvider
|

[Else] [Found]
""" <‘ V> 4

v
Sub)R tdent
SendRequest (Sub)Requestden »{ GetRequest

I Request

! Received
AnalyzeRequest

|
|
|
|
|
|
|
|
|
|
|
|
|
: .
|
! [Else [Known]
I T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

\J

|
i
|
! RealizeRequest
|
(Sub)Result y
GetSubResult |« Sent SendResult

————— +» ——» (capability <>
Internal event External event

Branch Synchronization bar

Figure 5.8: Dynamic diagram of the interaction between the Service consumer and
Service provider agents.

5.2 Implementation Model

In order to ground our work, we present in this section the implementation view of
the proposed architecture using the Java Agent DEvelopment Framework (JADE)
[20].

5.2.1 Overview of the JADE Framework

JADE is a framework used for implementing MAS, which conforms to the FIPA
standard. JADE simplifies the MAS development while ensuring standard compli-
ance through a comprehensive set of system services and agents. It provides MAS
developers with a number of features that allow to simplify the development process

[19]. We point out here some features that eases the implementation of our proposed
MAS:

97

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

e JADE is a FIPA-compliant agent platform, which includes the Agent Manage-
ment System (AMS), the Directory Facilitator (DF), and the Agent Commu-
nication Channel (ACC') which provides a Message Transport System (MTS)
and is responsible for sending and receiving messages on an agent platform;

e JADE can be integrated with script and rule engines which are essential to
enable the COTS dynamic integration;

e A distributed agent platform that can be split on several hosts provided that
there is no firewall between them. Only one Java application, and accord-
ingly only one Java Virtual Machine, is executed on each host. Agents are
implemented as one Java thread and Java events are used for effective and
light-weight communication between agents on the same host. Parallel tasks
can be executed by one agent, and JADE schedules these tasks in a more
efficient way than the Java Virtual Machine does for threads.

The rest of this section presents some notions of programming with JADE that
we need to know in order to implement our proposed MAS.

5.2.1.1 Agents Creation

Creating an agent in JADE is as simple as defining a class that extends the jade.-
core.Agent class and overriding the default implementation of the methods that are
automatically invoked by the agent platform during the agent life cycle, including
setup() for agent initialization and takeDown() for agent clean-up. Consistent
with the FIPA specification, each agent instance is identified by an Agent Identifier
(AID). In JADE, an AID is represented as an instance of the jade.core.AID class.

5.2.1.2 Agent Communication

Agent communication is probably one of the most fundamental features of JADE
and is implemented in accordance with the FIPA specification. The JADE communi-
cation paradigm is based on asynchronous message passing. Each agent is equipped
with an incoming message box and message polling can be blocking or non-blocking.
A message in JADE is implemented as an object of the jade.lang.acl.ACLMessage
object and the message is sent by calling the send method of the Agent class. By
calling the receive method of the Agent class, the message next in the queue is
fetched. The receive method can be provided with a message template to return
only a message that matches a pattern defined by the template. A simple example
of how a message is composed and sent is show in Code extract 5.1.

ACLMessage msg = new ACLMessage (ACLMessage .REQUEST);
msg . setLanguage ("A-Language");
msg.setOntology ("An-0Ontology");

98

5.2. IMPLEMENTATION MODEL

msg.setContent ("VerifyUserAccountServiceInformation");
msg.setReceiver (new AID("AgentName", AID.ISLOCALNAME));
send (msg);

Code extract 5.1: Composing and sending a message.

5.2.1.3 Defining Agents’ Capabilities

In JADE, an agent capability can be represented as a behavior which is implemented
as an object of a class that extends jade.core.behaviors.Behavior class. Each of
such behavior class must implement two abstract methods, including action() and
done(). The action() method defines the operations to be performed when the
behavior is in execution. The done() method returns a boolean value to indicate
whether or not a behavior has completed and is to be removed from the pool of be-
haviors of an executing agent. The addBehavior method is used to add a capability
to an agent and every behavior has a member variable called myAgent that points
to the agent that is executing the behavior. This provides an easy way to access an
agent’s resource from within the behavior.

Behavior is specialized in SimpleBehavior and CompositeBehavior. Simple-
Behavior represents simple atomic tasks. It is in turn specialized into OneShot-
Behavior, CyclicBehavior, WakerBehavior, and TickerBehavior. OneShotBehavior
is used to represent tasks to be executed only once; CyclicBehavior models cyclic
tasks that are restarted after finishing their execution cycle; WakerBehavior is used
for tasks to be executed after a given timeout; TickerBehavior is used to represent
tasks to be repetitively executed after waiting a given period. CompositeBehavior
represents complex tasks, that are made up by composing a number of other tasks.
CompositeBehavior is specialized into SerialBehavior and ParallelBehavior,
where SerialBehavior is specialized into FSMBehavior and SequentialBehavior.
FSMBehavior is used when the complex task is composed by tasks corresponding
to the states of a Finite State Machine (FMS); SequentialBehavior is a classi-
cal sequential composition of sub-tasks; ParallelBehavior allows the definition of
concurrency, where tasks are executed in virtual parallelism.

In our case, the MAS developers need to implement behaviors that process mes-
sage received from other agents. Such behaviors must be continuously running
(CyclicBehavior) and, act at each execution of their action() method, must check
if a message matching the specified message template has been received and process
it (see Code extract 5.2 as example).

private class Bl extends CyclicBehavior {
public void action (){

ACLMessage msg;

msg = myAgent.receive (messageTemplate);
if (msg != null) {

99

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

// Message received. Process it

else{
block ();
}

}

Code extract 5.2: Blocking a behavior waiting for a message.

5.2.1.4 Agent Discovery: The Yellow Page Service

JADE provides the yellow page service allowing agents to publish descriptions of
one or more services they provide in order that other agents can easily discover and
exploit them. Service subscriptions, unsubscriptions, modifications and searches can
be performed at any time by any agents during its lifetime. A simple example of how
an agent subscribes its service is shown in Code extract 5.3 and Code extract 5.4
shows an example of how an agent asks the DF for the relevant Service provider
agents.

DFAgentDescription dfd = new DFAgentDescription ();
dfd .setName (getAID ());

ServiceDescription sd = new ServiceDescription ();
sd.setType("ServiceName");

sd .setName (getLocalName()+"ServiceName");
dfd.addServices (sd);
try {

DFService.register (this, dfd);

catch (FIPAException fe) {
fe.printStackTrace ();
}

Code extract 5.3: Subscripting a service to the DF agent.

Vector ServiceProviderAgents = new Vector ();

DFAgentDescription template = new DFAgentDescription ();

ServiceDescription sd = new ServiceDescription ();

sd.setType("ServiceName");

template.addServices(sd);

try {

DFAgentDescription [] result;

result= DFService.search (myAgent, template);

for (int i = 0; i < result.length; ++i) {
ServiceProviderAgents.addElement (result [i].getName());
}

}

catch (FIPAException fe) {

100

5.2. IMPLEMENTATION MODEL

fe.printStackTrace ();

}

Code extract 5.4: Searching for Service provider agents.

5.2.1.5 Integrating JADE with a Rule Engine

In our case, we need to integrate the rule engine into some agent capabilities. This
can be done by integrating the rule-engine into an agent as a JADE behavior.

Currently, a number of different rule engines are available. Probably the best
know of them is Java Ezxpert System Shell (JESS). JESS is a rule engine and scripting
environment written entirely in Java [71] and has always been widely adopted by
the JADE community to realize rule-based agent systems. [17] examines the use of
both JADE and JESS for the development of intelligent agent systems. Examples
of the integration of JADE and JESS can be also found in [150]. However, since
JESS is no more licensed as a free open-source package, the necessity to have low
cost alternatives is becoming more and more impelling. [21] proposes Drools/JADE
(D4J) for integrating JADE agents with the Drools rule engine which is an open
source rule engine and also written in Java [148].

Code extract 5.5 shows an example of how business rules can be implemented
with Jess. These rules can be used for implementing a pricing engine for on-line
sales. The engine is supposed to look at each order, together with a customer’s
purchasing history, and apply various discounts and offers to the order. Rules can
be added, removed and modified easily and dynamically according to the pricing
policies of the company which can be changed often.

(defrule 10%—volume—discount
”Give a 10% discount to everybody who spends more than $100.”
70 <— (Order {total > 100})
=
(add (new Offer 710% volume discount” (/ 7o.total 10))))

(defrule 25%—multi—item—discount
7 Give a 25% discount on items the customer buys three or more of.”
(Orderltem {quantity >= 3} (price ?price))

(add (new Offer 725% multi—item discount” (/ ?price 4))))

Code extract 5.5: Rules written in Jess.

5.2.1.6 Integrating JADE with a Scripting Engine

In our proposed architecture, some agents’ capabilities especially the integration
logics are written in scripting language. BeanShell is a new type of scripting language
and it allows to use Java as a scripting language [146]. Code extract 5.6 shows how
to integrate a BeanShell script inside the agent behavior.

101

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

public void action () {
Interpreter i = new Interpreter ();
try {
i.set("myAgent", myAgent);
i.set("behaviour" this);
i.source("beanShell.bsh");
} catch (Exception e) {
e.printStackTrace ();
}

Code extract 5.6: Integrating a BeanShell script inside an agent behavior.

5.2.2 MAS Implementation with JADE

In this section, we present the implementation of the proposed MAS using JADE.
Figure 5.9 illustrates the class diagram containing different classes that implement
the proposed MAS. This implementation is described in detail in the rest of this

section.

102

5.2. IMPLEMENTATION MODEL

==dava Classe= ==lava Clags=>
(3 GetUserRequest (3 Gatewayagent
A5 jade. wrapper gateway
4 obj Ohject

==)ava Clags== & exitWalue: int
(@ SendUserRequestResult & GetlserRequestiAgent Object)
A @ action():void =fgia(v;;cwass=>

==Java Clazs=» & ol Ohject OmEH N ® MA‘:WW

(& X03 Reader

(c] e & sendUserRenuestResultigent Ojsct) Farate m sira

@ action():void N :

dom: Document = 0 ﬂFSTATEj. String

cb: DocumentBuilder

==Java Clags=»= SFaTaTE b arre
dhf: DocumentBuilderFactory (® SendUserRequest /_/_///—/_/€B STA.TE_D String
filehlame: String s o msg ACLMessage

o mt: MessageTemplste

;,‘-"‘upa‘ere{)'vum’
"“perseﬂocumenf(}'vu.la‘
1ML Reader(String)
parseXmiFile():void
getTextValues(Element, String[]): Stringf]
getTexdValue(Element String) String
et alue(Element, String)int

@ sendlserRecuest(Agent)
@ action(): woid

& Gateway()
processCommandlOhkject) vaid

==dava Clags=»

(9 GetUserRequestResutt
nas

4 tone: hoolean

QcGetUserReques‘tResuh(.ﬂ\gem)
@ action():void

—req 0.4

==Java Clags=»

@ done():hoolean (3 Request
hiss
==Java Clags== name; String
O senvice i
= MAS ==Java Clags== =Java Clasz== input: Hashtable
p— (@ ServiceDB (®UserRequestDB resul: Hashtable
S0 Srt\ng s M5 &Request()
name: =tring . ~uzerRequestDB & i
P—— ~servicelB & ServiceDBISHng) SFUserRequestDB(Sirin @ Request{String)
QBServlce(Strmg String) “ N i o 0.* FRe uesti String Hashtable)
e e(j-Strir; 0.r @ update():vaid @ update() void " V equ St'gl
- geﬂyp (st)g o @ containServiceName(String):boolkean parseDocument():vaid vgemame()ét ring .
setTypel String) voi @ setMameString): wol
= thameC: Sirin parsebocuments) void @ containReguestNamelRequest) boolean e _f ¥ pim— ['H f; -
\fg . 4) @ getServiceDB() ArrayList QIR
@ setMamelString): void ~userRequestDE @ =etinput(Hashtable) woid
@ toString(): String _serviceDE 9.1 @ getResut()x Hashtable

@ toString(x String
@ zetResultHashtable) void

==dava Class=»=

(3 RealizeRequest
hias

o mt: MessageTemplate

QDReallzeRequest[AgemJ

@ action():void

@ executeSubRequest(Request String, String) void

@ searchZerviceProvider(String, String DF AgentDescription[]
@ sendRequestiRequest DF AgertDescription(]):vaid

@ getSubResultlRegquest) void

==Java Clagz=>
(& ServiceProvider
MAS
5P STATE & String
S STATE_A: String
S STATE_C: String
S STATE I String

<<lava Class»=
(D GetRequest
MAg

==Java Clazs==
(2 Mediator
Mg
S STATE_#: String

o finizhed: boolean
a mt: MessageTemplate

/

& GetRequest(fgert)
@ action():void
@ done():hoolean

==Java Clags=»

5L STATE_B: String
(5 GetRequest
Rt

S STATE_C: String
S STATE_D: String

o dfd: DFAgertDescription
o magRegquest: ACLI
o regly: ACLMessage

4 finished: Boolean k/Q o servicesFileMame: String o megRegquest: ACLMessage

o mt: MessageTemplste o beanshellFilehame: String o reply. ACLMessage ®\ ==Java Class=s=
& GetRequestiAgent) - ::Java C||::S>> . FaervicePravider) -] beanSheIIF\IeName St.r\ng. \ySehn"gsRBsull
@ action(x voic © “ahl’SMfs jue: setup(rvoid o userRequestFiletame: String
@ doneq) boolean - takeDoven():voie & Mediatarr) & SendResut(Agent)
& exitValue: int @ servicesRegistert T void setup():void @ action(]vaid
& snalyseRequestiAget) @ servicesDeregister(): void
@ action():void @ servicesUpdate() void
@ onEnd(yint ==lave Classs=
(9 RealizeRequest
mag
0 T 7 = ==lava Clagz=>
a2, a5 <= - — 3
on av[a:r a;sm_ == SavadRa:s . (@ AnalyseRequest & mt: MessageTemplate
(e IUaCIVERCLION ©sen Su hAS QcReahzeREquest(Agent)
& exit'alue: int @ action():void
QDPVD.ECUVEA.C"DFI(AQEI‘IU ocSeljldResulF(Agerrt) \;BAnalyseRequest(Agerrt) @ execmeSub.Requesjt(Requt.as‘i,Siri.ng,Str\ng).vU\d N
@ actiong):void @ action():void & action(xvold @ searchServiceProvider(String String) DF AgentDescription]]
\,‘ onEnd(]"int @ sendRegquestiRequest DF AgentDescription]]):void
e _ @ getSubResulttReguest) void

Figure 5.9: Class diagram of our MAS implementation.

103

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

5.2.2.1 Connecting GUI and MAS layers

Figure 5.1 depicts the vertical architectural layers of our proposed architecture.
In our case, developers need to implement the Gateway agent which is a gateway
between GUI and MAS layers. To this end, JADE offers some utility classes in the
jade.wrapper.gateway package that could help developers. This package contains
JadeGateway and GatewayAgent classes. The JadeGateway class provides a simple
yet powerful gateway between some non-JADE code and a JADE based multi agent
system. It is particularly suited to be used inside a Servlet or a JSP.

Code extract 5.7 shows a simple example of a Servlet that connects with
Gateway agent. The JadeGateway is initialized and Gateway agent is responsible
for processing all requests from the Servlet. A user request is created to be sent
to the Gateway agent.

A user request is an instant of the Request class. Each request has a name, a set
of input parameters and a set of output parameters. The specification of each request
has to be documented and shared among developers. Each request has to be created
with the correct name and sets of input and output parameters. The created request
is sent to the Gateway agent by calling the method JadeGateway.execute(Object
request).

The method JadeGateway.execute(Object request) will return only after the
method GatewayAgent.releaseCommand (request) has been called by the Gateway
agent. Then, the Servlet gets the reply from the Gateway agent.

public class MyServlet extends HttpServlet {
private final static String HOST = "localhost";
private final static String PORT = "8888";

public void init () throws ServletException {
super. init ();

// Setting which class will be the GateWayAgent
Properties pp = new Properties ();
pp.setProperty (Profile .MAIN.HOST, HOST);
pp.setProperty (Profile .MAIN.PORT, PORT);
JadeGateway.init ("MAS.Gateway", pp);)

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// Reading the user input
String bookTitle = request.getParameter("bookTitle");

// Createing a request to send to the Gateway agent
Hashtable parameters = new Hashtable ();
parameters.put("title", bookTitle);

Request req = new Request("BookPrice");
req.setInput (parameters);

try {

104

5.2. IMPLEMENTATION MODEL

// Sending request to Gateway agent
JadeGateway . execute (req);

} catch (Exception e) {
e.printStackTrace ();

// Getting reply from the Gateway agent

if (req.getResult () = null)

request.setAttribute ("Reply", "Unknown,request.");

else {

Hashtable result = req.getResult ();

int price = (Integer) result.get("price");
request.setAttribute ("Reply", Integer.toString(price));

// Forwarding result to a JSP

this.getServletContext (). getRequestDispatcher ("myjsp.jsp")
.forward (request , response);

}

}

Code extract 5.7: A simple example of a Servlet connecting with Gateway agent.

5.2.2.2 Gateway Agent Implementation

The Gateway agent is a class that extends the GatewayAgent class and redefines
its method processCommand. When the method JadeGateway.execute(Object
request) is called, it causes the callback of the method processCommand of the
Gateway agent. In our case, we create a FSM behavior to handle the user request
(see Code extract 5.8).

In JADE, a FSM behavior is used when the complex task is composed by tasks
corresponding to the states of a Finite State Machine (FMS). As we can see in the
Code extract 5.8, the FSM behavior is composed of GetUserRequest, SendUser-
Request, GetUserRequestResult and SendUserRequestResult behaviors. These
behaviors are the implementation of the corresponding Gateway agent’s capabilities
described in Section 5.1.3.2. The implementations of these behaviors are presented
respectively in Code extract 5.9, 5.10, 5.11 and 5.12. They are private classes inside
the Gateway class.

public class Gateway extends GatewayAgent {

private static final String STATEA = "A";
private static final String STATEB = "B";
private static final String STATEC = "C";
private static final String STATED = "D";

private Request req;
private ACLMessage msg;
private MessageTemplate mt;

@Override
protected void processCommand (Object obj) {

105

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

// Creating a FMS behavior for handling the user request
FSMBehaviour fsm = new FSMBehaviour(this);

// Registering states

fsm.registerFirstState (new GetUserRequest(this, obj), STATEA);
fsm.registerState (new SendUserRequest(this), STATEB);
fsm.registerState (new GetUserRequestResult (this), STATEC);
fsm.registerLastState (new SendUserRequestResult(this, obj), STATED);

// Registering the transitions

//Getting to the state B if the request is known
fsm.registerTransition (STATE.A, STATEB, 1);

//Getting to the final state if the request is unknown

fsm.registerTransition (STATEA, STATED, 0);

fsm.registerDefaultTransition (STATE.B, STATEC);
fsm.registerDefaultTransition (STATE.C, STATED);

// Adding the FSM to the Gateway agent
addBehaviour (fsm);

Code extract 5.8: Extract code of the Gateway agent.

private class GetUserRequest extends OneShotBehaviour {

Object obj;
int exitValue;

public GetUserRequest (Agent agent, Object obj) {
super (agent);
this.obj = obj;

}

public void action () {
if (obj instanceof Request) {

req = (Request) obj;

exitValue = 1;
} else {
exitValue = 0;
}
}
@Override

public int onEnd() {

return exitValue;

}
Y// End of inner class

Code extract 5.9: Extract code of the GetUserRequest behavior.

106

5.2. IMPLEMENTATION MODEL

private class SendUserRequest extends OneShotBehaviour {

public SendUserRequest (Agent agent) {
super (agent);

public void action () {

msg = new ACLMessage (ACLMessage . REQUEST);
msg.addReceiver (new AID("Mediator", AID.ISLOCALNAME));
try {

msg.setContentObject (req);

} catch (IOException e) {

e.printStackTrace ();

msg.setReplyWith ("request" + System.currentTimeMillis ());
send (msg);

Y// End of inner class

Code extract 5.10: Extract code of the SendUserRequest behavior.

private class GetUserRequestResult extends Behaviour {
boolean done = false;

public GetUserRequestResult (Agent agent) {
super (agent);

public void action () {
mt = MessageTemplate.and (
MessageTemplate. MatchSender (new AID("Mediator", AID.ISLOCALNAME)),
MessageTemplate . MatchInReplyTo (msg. getReplyWith ()));
ACLMessage reply = receive(mt);
if (reply != null)
try {
req.setResult ((Hashtable) reply.getContentObject ());
System.out.println (req.getResult ());
} catch (UnreadableException e) {

e.printStackTrace ();

done = true;

} else {
block ();

}
public boolean done() {

return done;

}}/ End of inner class

Code extract 5.11: Extract code of the GetUserRequestResult behavior.

107

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

private class SendUserRequestResult extends OneShotBehaviour {
Object obj;
public SendUserRequestResult (Agent agent, Object obj) {

super (agent);
this.obj = obj;

@Override
public void action () {

releaseCommand (obj);

}
}
}

Code extract 5.12: Extract code of the SendUserRequestResult behavior.

5.2.2.3 Mediator Agent Implementation

Code extract 5.13 shows how the Mediator is implemented. It consists of a FSM
behavior which is composed of GetRequest, AnalyzeRequest, RealizeRequest and
SendResult behaviors. These behaviors are the implementation of the correspond-
ing Mediator agent’s capabilities described in Section 5.1.3.2.

public class Mediator extends Agent {
protected void setup () {

Object [] args = getArguments();

if (args != null && args.length > 1) {

/* Getting the name of file that stores

the BeanShell script used in RealizeRequest
behavior.x/

beanShellFileName = (String) args[0];

/* Getting the name of XML file that stores
the description of user requests that can
be handled by the Mediator.x/
userRequestFileName = (String) args[1];

FSMBehaviour fsm = new FSMBehaviour(this);

fsm.registerFirstState (new GetRequest(this), STATEA);
fsm.registerState (new AnalyzeRequest(this), STATEB);
fsm.registerState (new RealizeRequest (this), STATEC);
fsm.registerState (new SendResult(this), STATED);

//State transition.
fsm.registerDefaultTransition (STATEA, STATEB);
fsm.registerTransition (STATEB, STATEC, 1);

108

5.2. IMPLEMENTATION MODEL

fsm.registerTransition (STATEB, STATEA, 0);
fsm.registerDefaultTransition (STATE.C, STATED);
‘ fsm.registerDefaultTransition (STATED, STATEA);

addBehaviour (fsm);

B

Code extract 5.13: Extract code of the Mediator agent.

Code extract 5.14 shows the implementation of the GetRequest capability. It is
done when it gets a request. Otherwise, it is blocked.

private class GetRequest extends Behaviour {
Boolean done = false;

private MessageTemplate mt;

public GetRequest (Agent agent) {
super (agent);

}

public void action () {
mt = MessageTemplate. MatchPerformative (ACLMessage . REQUEST) ;
msgRequest = receive (mt);
if (msgRequest != null) {
reply = msgRequest.createReply ();
try {
Object contentObject = msgRequest.getContentObject ();
if (contentObject instanceof Request) {

req = (Request) contentObject;
done = true;

}
} catch (UnreadableException e) {
e.printStackTrace ();

} else {
block ();

}
}

public boolean done() {

return (done);

Y// End of inner class

Code extract 5.14: Extract code of the implementation of the GetRequest capability.

Code extract 5.15 shows the implementation of the AnalyzeRequest capability
allowing the Mediator agent to check if it can answer the request received. To
simplify, this is done for the moment by checking the request name. All the user
requests that can be handled by the Mediator agent are stored in an XML file. Code
extract 5.16 shows a simple example of such file. The UserRequestDB class (Code
extract B.8) is used to read such XML file. It extends the XMLReader class (Code
extract B.5) which is an abstract class offering the methods to read XML files.

109

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

private class AnalyzeRequest extends OneShotBehaviour {
int exitValue = 0;

public AnalyzeRequest (Agent agent) {
super (agent);

public void action () {

if (req != null) {

UserRequestDB userRequestDB=new UserRequestDB (userRequestFileName);
if (userRequestDB.contains(req))
exitValue = 1;

}

}

@OQOverride
public int onEnd() {
return exitValue;

}
Y// End of inner class

Code extract 5.15: Extract code of the implementation of the AnalyzeRequest
capability.

<?xml version="1.0" encoding="UTF-8"7>
<UserRequest>
<Request>
<Name>BookPrice</Name>
</Request>
<Request>
<Name>BookCatalogue</Name>
</Request>
</UserRequest>

Code extract 5.16: Code extract of the UserRequest XML file.

Code extract 5.17 shows the implementation of the RealizeRequest capability.
In order to get the dynamic integration among component, the realization of the re-
quest is written in BeanShell script. The use of BeanShell script inside the JADE be-
havior is shown in Code extract 5.17. Code extract 5.18 provides a simple example of
BeanShell script for the RealizeRequest behavior. The SearchServiceProvider,
SendRequest and GetSubResult capabilities that are used during the request real-
ization are implemented in form of three corresponding methods inside the RealizeRequest
behavior. The implementations of these capabilities are presented respectively in
Code extracts 5.19, 5.20 and 5.21.

public class RealizeRequest extends OneShotBehaviour {

public RealizeRequest (Agent agent) {
‘ super (agent); ‘
\ \

}

110

5.2. IMPLEMENTATION MODEL

public void action () {

Interpreter i = new Interpreter ();

try {
i.set("myAgent", myAgent);
i.set("behaviour", this);
i.set("req", req);
i.source (beanShellFileName);

} catch (FileNotFoundException e) {
e.printStackTrace ();

} catch (IOException e) {
e.printStackTrace ();

} catch (EvalError e) {
e.printStackTrace ();

}
}

Code extract 5.17: Extract code of the implementation of the RealizeRequest
capability.

import java.util.Hashtable;

import jade.core.Agent;

import jade.core.behaviours.OneShotBehaviour;
import MAS. Request ;

import MAS. Mediator;

public void executeSubRequest (Request subReq, String serviceType,
String serviceName) {
behaviour.searchServiceProvider (serviceType, serviceName);
behaviour.sendRequest (subReq);
behaviour. getSubResult (subReq);

}

if (req.getName().equals("BookPrice")) {
executeSubRequest (req ,"Book" ,"BookPrice");

} else if (req.getName().equals("BookCatalogue")){
executeSubRequest (req ,"Book" ,"BookCatalogue");
}

Code extract 5.18: Code extract of Bean shell script for the Mediator.

public void searchServiceProvider (String type, String name) {

try
// Build the description used as template for the search
DFAgentDescription template = new DFAgentDescription ();
ServiceDescription templateSd = new ServiceDescription ();
System.out.println ("Service provider,search: " + serviceType + ":"

+ serviceName);

templateSd.setType (type);
templateSd.setName (name);
template.addServices (templateSd);

111

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

DFAgentDescription[] results = DFService.search (myAgent, template);
System.out.println (results.length);
serviceProviders = results;

} catch (FIPAException fe) {

fe.printStackTrace ();
serviceProviders = null;

}

Code extract 5.19: Extract code of the implementation SearchServiceProvider
capability.

public void sendRequest (Request request) {
if (serviceProviders.length > 0) {

// Send the cfp to all sellers

ACLMessage msg = new ACLMessage (ACLMessage .REQUEST) ;
for (int i = 0; i < serviceProviders.length; 4++i) {
msg. addReceiver (serviceProviders[i].getName());

try {
msg.setContentObject (request);

} catch (IOException el) {
el.printStackTrace ();

msg.setReplyWith ("request" 4 System.currentTimeMillis ());
myAgent . send (msg);
// Prepare the template to get proposals
mt = MessageTemplate . and (
MessageTemplate. MatchConversationld ("conversationId"),
MessageTemplate . MatchInReplyTo (msg. getReplyWith ()));

} else {
System.out.println ("Service,provider not, found.");

}
}

Code extract 5.20: Extract code of the implementation SendRequest capability.

public void getSubResult (Request request) {
if (serviceProviders.length > 0) {
ACLMessage reply = myAgent.receive (mt);

while (reply = null)
reply = myAgent.receive (mt);
try {

request .setResult ((Hashtable) reply.getContentObject ());

} catch (UnreadableException e) {
// TODO Auto—generated catch block
e.printStackTrace ();

}
}

112

5.2. IMPLEMENTATION MODEL

}
}Y// End of inner class

Code extract 5.21: Extract code of the implementation GetSubResult capability.

5.2.2.4 Service provider Agent Implementation

Code extract 5.22 illustrates the implementation of a Service provider agent. It
composes of two main behaviors which are executed in parallel. The first handles
the request from other agents and the second handles its proactive actions. The
proactive actions are specific to each agent. Consequently, we do not focus on the
implementation of the second behavior.

Similarly to the Mediator agent, the first behavior of Service provider agent is
complex behavior implemented through a FSM behavior composed of GetRequest,
AnalyzeRequest, RealizeRequest and SendResult behaviors wherein their imple-
mentations are almost the same except the used of ServiceDB class (Code extract
B.6) instead of UserRequestDB in the AnalyzeRequest behavior.

Code extract 5.23 shows the implementation of the AnalyzeRequest capability
of a Service provider agent. To simplify, this is done for the moment by checking
the request name which corresponds to the service name offered by the Service
provider agent. The ServiceDB class is used to read the XML file that stores the
description of services offered by the Service provider agent. Code extract 5.24
shows a simple example of such file. A service is an instant of the Service class.
To simplify, each service is defined through its type and name.

When a Service provider is started up, it registers the services that it offers
to the yellow page service of JADE. It deregisters its services from the yellow page
when it is off. The ServiceRegister, ServicesDeregister and ServicesUpdate
capabilities are implemented in form of three corresponding methods inside the
Service provider agent. The implementations of these capabilities are presented
respectively in code extracts 5.25, 5.26 and 5.27.

public class ServiceProvider extends Agent {
private static final String STATEA A",

private static final String STATEB — "B";
private static final String STATEC = "C";
private static final String STATED = "D";

DFAgentDescription dfd;

private Request req;

private ACLMessage msgRequest, reply;
private String servicesFileName;
private String beanShellFileName;
private ServiceDB serviceDB;

@Override

113

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

protected void setup () {

dfd = new DFAgentDescription ();

dfd .setName (getAID ());

Object [] args = getArguments();

if (args != null && args.length > 0)
servicesFileName = (String) args[0]
beanShellFileName = (String) args]|[1
servicesRegister ();

}

FSMBehaviour fsm = new FSMBehaviour(this);

R
I

fsm.registerFirstState (new GetRequest(this), STATEA);
fsm.registerState (new AnalyzeRequest(this), STATEB);
fsm.registerState (new RealizeRequest (this), STATEC);
fsm.registerState (new SendResult(this), STATED);

// State transitions
fsm.registerDefaultTransition (STATEA, STATEB);
fsm.registerTransition (STATEB, STATEC, 1);
fsm.registerTransition (STATEB, STATEA, 0);
fsm.registerDefaultTransition (STATE.C, STATED);
fsm.registerDefaultTransition (STATED, STATEA);

//The fsm behavior for handling the request

//from other agent and another behavior for proactive
//actions are executed in parallel

ParallelBehaviour b = new ParallelBehaviour ();
b.addSubBehaviour (fsm);

b.addSubBehaviour (new ProactiveAction(this));
addBehaviour (b);

protected void takeDown () {
// Deregister from the yellow pages
servicesDeregister ();

Code extract 5.22: Extract code of the Service provider agent.

private class AnalyzeRequest extends OneShotBehaviour {
int exitValue = 0;

public AnalyzeRequest (Agent agent) {
super (agent);

}
public void action () {
if (req != null) {

if (serviceDB.containServiceName (req.getName()))
exitValue = 1;
}

}
@Override

114

5.2. IMPLEMENTATION MODEL

public int onEnd() {
return exitValue;

}
Y// End of inner class

Code extract 5.23: Extract code of the implementation AnalyzeRequest capability
of a Service provider agent.

<?xml version="1.0" encoding="UTF-8"7>
<Services>
<Service>
<Type>Book</Type>
<Name>BookPrice</Name>
</Service>
<Service>
<Type>Book</Type>
<Name>BookCatalogue</Name>
</Service>

</Services>

Code extract 5.24: Code extract of Services XML file.

public void servicesRegister ()
serviceDB = new ServiceDB(servicesFileName);
Iterator it = serviceDB.getServiceDB ().iterator ();
Service service;
while (it .hasNext())
service = (Service) it .next ();
ServiceDescription sd = new ServiceDescription ();
sd.setType(service.getType());
sd .setName (service .getName ());
System.out.println (service.getType() + "u" + service.getName());
dfd.addServices (sd);

}

try {
DFService.register (this, dfd);

} catch (FIPAException fe) {
System.out.println ("Service,registrering exception.");
fe.printStackTrace ();

}
Code extract 5.25: Extract code of the implementation of the ServiceRegister

capability.

i public void servicesDeregister () {
| try {
DFService. deregister (this);
‘ } catch (FIPAException fe) {
\ fe.printStackTrace ();

}

115

CHAPTER 5. AN AGENT-DRIVEN INTEGRATION ARCHITECTURE

| }

|

Code extract 5.26: Extract code of the implementation of the ServiceDeregister
capability.

public void servicesUpdate () {
servicesDeregister ();

dfd. clearAllServices ();
servicesRegister ();

System.gc ();

Code extract 5.27: Extract code of the implementation of the ServiceUpdate ca-
pability.

5.3 Chapter Summary

In this chapter, we have presented our proposed integration architecture through the
use of a wrapper-based multi-agent (MAS) architecture. More precisely, we propose
a MAS architecture designed to wrap the different components used in the software
system acting as an abstraction layer between the user’s (high level) requests, their
functional decomposition and the coordination of execution by the components.

Our architectural description goes beyond a pure system design by incorporat-
ing a description over multiple complementary dimensions illustrating the different
aspects of the MAS architecture for components integration. It is generic but can
be adapted to a particular business logic issued of a project specific domain model.
This allows the developers and designers to focus on requirements models on the
one hand and on (standardized) interfacing with the MAS on the other hand to
adequately tune and configure the architectural level.

We also show the possibility of implementing our proposed MAS using the JADE
agent framework. This constitutes an implementation model which facilitates de-
velopers to implement our proposed MAS.

116

Part 1V

RecIProC: Rationale
Incremental and Iterative
Process for COTS-Based

System Development

117

Chapter 6

Towards an Agent-Oriented
Methodology for CBSD

In this chapter, we firstly present the shortcomings we can draw from our literature
review on the CBSD and the specifications for our methodology. Then, we present
the adaption of agent-oriented techniques for system analysis and modeling for our
methodology. Finally, our methodology for CBSD called Rationale Incremental and
Iterative Process for Building COTS-based Systems (RecIProC) is described.

6.1 Weaknesses of Existing CBSD Methods

In this section, we present the conclusion of our review on the existing works on
CBSD. We firstly point out a list of shortcomings. Then, on the basis of these
shortcomings we define a set of requirements to be fulfilled by our methodology.

6.1.1 Shortcomings

The main shortcomings we can draw from our literature review on the CBSD (see
Chapter 3) are the following:

1. methodologies that address the life cycle of CBSD provide only high-level
processes without providing any practical models and guidelines for use in the
process;

2. there is not any approach that deals with the strategic reasoning of a CBSD
project;

3. there is a lack of approaches that deal with all dimensions (i.e, functional
requirements, NFRs, non-technical, etc.) concerning COTS selection;

119

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR
CBSD

4. most approaches are suitable only for single COTS selection and few ap-
proaches addressing multiple COTS selection provide only high-level processes.

6.1.2 Specifications for RecIProC

The aim of this thesis is to contribute to the improvement of CBSD. We seek to
address the above shortcomings by proposing a methodology that meet the following
specifications for RecIProC:

1. providing an adequate CBSD process with some practical models and guide-
lines for use in the process;

2. covering business analysis, requirements analysis, COTS evaluation and selec-
tion, COTS mismatches handling, and COTS integration;

3. dealing with all dimensions (i.e. functional requirements, NFRs and non-
technical aspect) concerning COTS selection;

4. suitable for both single and multiple COTS selections;

5. providing tool support.

6.2 Adopting the i* Framework for Our Methodology

The aim of our work is to propose a methodology for developing large scale dis-
tributed business systems with the use of COTS components. Such a system allows
a company to automate and integrate the majority of its operations; this makes the
company more competitive in the market place. It is thus important to have a good
understanding of the target organizational environment.

According to the comparative study for goal modeling techniques presented in
[92], there are a few modeling techniques that have been proposed to describe the
current organizational situation during requirements elicitation. They are GOMS
[45], Goal-based Workflow [63], i* framework [170] and EKD [93]. Among them,
only the i* framework provides the mechanism to model complex social and organi-
zational relationships and to help reasoning about them. Indeed, it allows intention,
relationship and motivation modeling among organizational members. From the SD
and SR models, we can have a better understanding of how the organizational en-
vironment is working, human and work relations among the organizational actors
which can be humans or software systems.

Despite the well-known advantages of the i* modeling framework, there are some
issues that still need to be improved to ensure its effectiveness in practice [64] [161].
[161] argued that one of the main problems is the lack of an adequate scope element.
A scope element is a high level model element identified in the analysis phase and

120

6.2. ADOPTING THE I* FRAMEWORK FOR OUR METHODOLOGY

used to drive the software development process. Indeed, in the i* model, the goal is
the only element that can be considered as a scope element since it represents the
most abstract functional issue. However, its use as a scope element has the following
drawbacks [161]:

e The atomicity of the goal is not clearly defined. A goal decomposition can
involve atomic goal part of higher level ones. Consequently, there is a large
number of goals presented in i* diagrams of huge software projects — too many
for keeping an easily understandable vision of the software project. Moreover,
goals are often modeled at different abstraction levels so that they can be
totally or partially overlapping which is a major drawback to keep the simple
goal-based vision;

e The distinction between a task and a goal is not always trivial in the sense
that different persons can model similar behavior by a goal or by a task.

To address this problem, the authors of [64] propose to extend the i* model with
a new element/diagram at higher abstraction level allowing to represent a service the
agent should provide in a non redundant way. The main idea of this proposal is the
representation of an organizational model as a composition of business services where
these services represent the functionalities that the organization offers to potential
customers. This approach is taken as the starting point of the work presented
in [161]. The authors of [161] use the idea of a service level diagram with non-
overlapping services. More precisely, they extend the i* modeling framework with
a new model called the Strategic Service Model (SSM) to present on the highest
aggregation level the services provided by the system with the actors involved as
well as the potential threats and opportunities they can face.

In this thesis, we propose to use the SSM proposed in [161] for defining the scope
of the project and modeling the big picture of the intended integrated system. For
clarity reason, instead of using all the elements of the SSM (see [161]), the SSM used
in our methodology consists of a set of actors and links connecting actors. Actors are
intentional entities used to model people, physical devices or software systems that
use or offer services. Each link represents a service dependency between two actors
whereby one actor (the depender) depends on the other (the dependee) to offer a
service. There are typically two types of services in the SSM: Business services —
business processes accomplished in the business domain of the company — and User
services — services provided by the software system to the end user. The use of
the SSM allows all the project stakeholders to share a common aggregate view of
what the COTS components should offer as well as their dependency relationships.
In addition, it also allows to analyze the strategic impacts in term of threats and
opportunities that the project can face.

Furthermore, in our methodology, the SD and SR models will be used to provide a
more detailed description of organizational environment and functional requirements

121

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR
CBSD

of each application package. While an SD model representing the intentional level
of an application package will be used to drive the search for corresponding COTS
components in the marketplace, an SR model representing the rationale level of
the application package will be used to lead the COTS candidates evaluation at
high-level.

In [170], the non-functional requirements of the system can be represented as
softgoals due to the similarity between non-functional requirements and softgoals
which lies in the fact that they are both subjective and there are no clear-cut criteria
for achievement. However, in our methodology, we distinguish softgoals from non-
functional requirements. As argued in [76], non-functional requirements or quality
requirements define constraints but do not define system functions while softgoals
characterize states that the system should attain and thus can describe directly
or indirectly a system function. According to [76], a softgoal is a goal with
quality constraints. For instance, “All banking transactions must be treated in a
secure manner” is a softgoal. It represents a goal “All banking transactions must
be treated” constrained by the quality requirement “in a secure manner”. This
distinction provides a clearer definition of softgoal. The author of [76] suggests to
add a new element representing the quality requirement to the i* model. However,
in our methodology, for defining the non-functional requirements of the system, we
propose to use the NFR framework [53]. In this way, we reduce the complexity of
the resulting SD and SR models.

In addition, it is also important to clarify the distinction between a task and a
goal. For this clarification, we apply a constraint defined in [159] that a task cannot
be decomposed into sub-goals. This constraint ensures that goals are more abstract
than tasks. In our research context, a goal represents a high-level requirement of
which satisfaction cannot be directly measured or judged in a COTS component
while a task represents a technical goal which can be matched with the application
features.

In order to prioritize the requirements, we associate each goal, softgoal and task
with a degree of desirability:

e Very High (VH): very critical goal that must be fulfilled otherwise the suc-
cess of the project will be strongly compromised;

e High (H): critical goal that must be fulfilled otherwise the success of the
project will be compromised;

e Medium (M): important goal that should be fulfilled in order to ensure that
significant goals will be satisfied;

e Low (L): desirable goal that could be interesting to have but that does not
affect the success of the system;

122

6.2. ADOPTING THE I* FRAMEWORK FOR OUR METHODOLOGY

e Very Low (VL): slightly desirable goal that does not affect the success of
the system.

Following the comparative study of the i* variants presented in [16], Table 6.1
summarizes the specification of the i* variant used in our methodology. It shows the
comparison between Yu’s i* and our i* variant according to the following criteria:

o Types of models. As stated earlier, we propose to use the SS model in addition
to the two existing SD and SR models for modeling the most aggregate static
view of the project for adequate identification of different individual systems;

e Types of actors. In our methodology, the specialization of actors is not used
in order to reduce the complexity of the models;

e Intentional elements. Service is a new intentional element in addition to the
existing ones (i.e. goal, softgoal, task and resource);

e Relationships among intentional elements. Since the specialization of actors is
not used, only dependencies among actors by means of intentional elements is
used;

o Relationships among intentional elements. We propose to use the four types
of relationships: dependencies, means-end,decompositions and contributions;

e Degree of desirability. As evoked above, for prioritizing the requirements, a
degree of desirability is assigned to each goal, softgoal and task.

The following section describes the development process of our methodology. It
will provide guidelines to build the i* models with respect to the above specification.

123

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR

CBSD

Table 6.1: Specification of our i* variant.

Types of models SD and SR SS, SD and SR
Types of actors 1 generic 1 generic
3 specific: role, position
and agent
Goal, softgoal, task, re- | Service, goal, softgoal,

Intentional elements

source

task, resource

Relationship among
actors

Dependencies among ac-
tors by means of inten-
tional elements
Relationships among spe-
cific types of actors “occu-
pies”, “cover” and ”play”
Relationship “is-part-of”

Dependencies among ac-
tors by means of inten-
tional elements

Relationship among
intentional elements

Dependencies among ac-
tors

Means-end relationships
Decomposition
ships
Contribution relationships

relation-

Dependencies among ac-
tors

Means-end relationships
Decomposition
ships
Contribution relationships

relation-

Degree of desirability

N/A

5 degrees of desirability are
associated with goal, soft-
goal and task:Very high,
High, Medium, Low, Very
low

6.3 Rationale Incremental and Iterative Process for CBSD

This section describes our methodology for CBSD called Rationale Incremental
and Iterative Process for Building COTS-based Systems (RecIProC). To present
an overview of the process, we use the Software Process Engineering Meta-Model
(SPEM) [131].

6.3.1 The Software Process Engineering Meta-Model (SPEM)

The Software Process Engineering Meta-Model (SPEM), specified by the Object
Management Group (OMG), is used to define and describe software development
processes and their components [131]. It constitutes a sort of ontology of software
development processes. A full description of SPEM can be found in [131]. Figure

124

6.3. RATIONALE INCREMENTAL AND ITERATIVE PROCESS FOR CBSD

6.1 depicts the relevant SPEM concepts used in this thesis.

e Phase. It is used to express significant segments of the complete life cycle;

o WorkDefinition. It constitutes a kind of operation that describes the work
performed in the process;

o Activity. It is described as a unit of work that must be engaged in order to
produce products;

o WorkProduct. It is anything produced, consumed or modified by a process.
Information, documents and models constitute different kinds of WorkProduct.

) JR= N

Phase WorkDefintion Activity
Document Model WorkProduct

Figure 6.1: Some relevant SPEM elements.
6.3.2 Process Model

)

COTS Product
Evaluation

20—

Decision COTS COTS
Making Customization Integration

).

COTS Product

Identification))
Business
)/Analysis

Requirements
Analysis

Figure 6.2: A RecIProC development cycle.

RecIProC is an iterative cyclic approach for incrementally integrating COTS
components into the system. Each cycle produces a deliverable “increment” of the

125

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR
CBSD

software with new COTS added to the system. As depicted in Figure 6.2, a RecIProC
cycle consists of seven iterative phases including Business Analysis, Requirements
Analysis, COTS Product Identification, COTS Product Evaluation, Decision Making,
COTS Customization and COTS integration. An overview of the RecIProC cycle is
depicted in Figure 6.3. The different phases of the RecIProC cycle will be described
in the following sections.

6.3.3 Business Analysis Phase

This phase consists of three main WorkDefinitions® including Studying the business
context, Defining the scope of the project, and Analyzing strategic impacts. These
WorkDefinitions are mainly performed during the first cycle of the project. During
the following cycles, they are performed to handle the business changes. The result
from the business analysis phase serves as a basis for the following phases.

6.3.3.1 Studying the Business Context

The aim of this WorkDefinition is to understand the business context in order to
define the business problems to be solved or the business opportunities to be ad-
dressed by the information system. The understanding is based on business plans,
annual reports, and interviews with executives.

6.3.3.2 Defining the Scope of the Project

The aim of this WorkDefinition is to identify the different systems that will be
integrated together to build the intended system. As stated in Section 6.2, we suggest

to use the Strategic Service Model (SSM) proposed in [161] to help accomplishing
this WorkDefinition.

A Strategic Service Diagram (SSD) is built-up iteratively. The process of building
a SSD (see Figure 6.4) begins with the identification of an initial set of organiza-
tional stakeholders involved in the problem addressed. Next, the business service
dependencies among these stakeholders should be identified. Then, the software sys-
tems that the stakeholders need in order to fulfill the services they offer are included
as well as the user services that each system needs to offer. At this point, a first
version of the SSD is obtained. If new actors or new service dependencies have to
be incorporated in the diagram, the process iterates. The created SSD needs to be
validated with the stakeholders since it defines the scope of the project.

'n the sense defined by the Software Process Engineering Metat-Model (SPEM)[131]

126

6.3. RATIONALE INCREMENTAL AND ITERATIVE PROCESS FOR CBSD

» 5 5
s | e >
Business Studying the business Defining the scope

Analysis context Business context of the project

and objectives 7 N
N N D
. Ny U B N N
£ W/ e ----- >

Asetofrequired Strategic service an'lz):ls':ggact Stratleg!c lmpatit
systems diagram gic impacts analysis repor

» y bZD< —————————————————————
Requirements =~ """~ > Defining the functional

Analysis Defining the integrated requirements of each

Defining the NFRs of system architecture
PN

required system ~
each required system
|

- N | ~
|

|
|
| |
| |
| |
| |
! |
| | - N S !
[N v S |
| i
|
| i
|
| A set of architectural System . I ional |
! Softgoal constraints architecture ~ Strategic dependency S"alg_g'c rational |
! Interdependency Graph AN ,~ diagram lagfam !
! ~ N , | !
] ! S~o N .] !
I I ~~_ N , | I
))) | ! S~o Y 4 | !
| =~
| ! RN | !
COTS Product! i Searching f e COTS | |
Identification ! ! earching for the | !
! ! candidates | |
| | i i |
I i N ! |
| | Feedback Feedback L 1
,,,,,,,, SN 1t st (EEEE.
! |
L\\\ COTS components A
T~ searcn result -
\\\\\ } ’///,,
» \ e
COTS Product D
Evaluation - Evaluating COTS
Evaluation candidates
result

|

|

|

|

T
v

» o >
Decision Making DaD

Making decision A set of selected

components
|
|
» Dy AR
COTS Customization Customizing _
components Customized
components
» e
COTS Integration Integrating components

Figure 6.3: Overview of a RecIProC cycle.

127

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR
CBSD

Y .

Identify organizational
stakeholders

&

Identify business service
dependencies among
stakeholders

&

Identify software
systems needed and
user services
dependencies

3

Validate the SS diagram
with the stakeholders

[Unaccepted]

[Accepted]

@=4

Figure 6.4: An SSD building process.

6.3.3.3 Analyzing Strategic Impacts

This WorkDefinition aims to study the long-term strategic impacts of adopting the
software project. In our methodology, the SSM is used to model the project scope
and according to the theoretical model of the SSM [161], it allows business an-
alysts to analyze the strategic impacts in term of threats and opportunities that
the project can face. To this end, the added value/risk exposure for each partic-
ular service to each particular opportunity/threat is evaluated on the basis of a
Low/Medium/High/None scale. The opportunity/threat hierarchy is established
through an “Opportunity/Threat Table” assigning to each service an opportunity
added value/risk exposure probability. We basically define four values for opportu-
nities added value/threats exposure for a particular service:

128

6.3. RATIONALE INCREMENTAL AND ITERATIVE PROCESS FOR CBSD

e Low: “L” in a yellow filled cell, has a weight of 1;

Medium: “M” in a orange filled cell, has a weight of 2;

High: “H” in a red filled cell, has a weight of 4;

e Non-existing: an empty cell, this service is not concerned by this opportu-
nity/threat, has a weight of 0.

The process of determining the opportunity and threats as well as assigning the
values just mentioned is done through interview with the stakeholders. These values
are not “guessed” by software analysts but obtained by an interview/survey process.

The Owerall Risk Ezxposure of a service is computed as follows:

Overall RiskExposures = Z tw;.re;
i

where tw; is the weight of the threat ¢ and rej is the exposure of the service s to
the threat 7. As we can see, ref can thus take the value 0 (Non-existing), 1 (Low),
2 (Medium), or 4 (High).

Similarly, the Overall Opportunity Added Value of a service is computed as fol-
lows:

OverallOpportunity AddedV alues; = Z ow;.av;

where ow; is the weight of the opportunity ¢ and av; is the exposure of the service
s to the opportunity i. As we can see, av; can thus take the value 0 (Non-existing),
1 (Low), 2 (Medium), or 4 (High).

Figure 6.5 illustrates an examples of threat/service matrix (see Figure 6.6 for an
example of opportunity /service matrix).

6.3.4 Requirements Analysis Phase

This phase focuses on defining the system requirements. It consists of three main
WorkDefinitions including Defining the integrated system architecture, Defining the
functional requirements of each required system, and Defining the NFRs of each
required system.

6.3.4.1 Defining the Integrated System Architecture

This WorkDefinition aims to define the architecture of the integrated system. The
output of this work is a system architecture model and a set of architectural con-
straints that will be used in the evaluation of COTS components. In our methodol-
ogy, we propose a system architecture model for integrating COTS components (see
chapter 5 for the detail).

129

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR
CBSD

=

g 33

2 2213 12e]8] 5% | &8

< olololololol olo | 22

g SHEHHEHE g %

= SB35 | S|a] 3|6 | 2|2
Threadl 4 L M| L
Thread2 3 L L
Thread3 2 LIMIMILIL
Thread4 2 MIM MTF
Thread5 2 L L|L LjL
Thread6 LILJ|L LIMIMIM|M
Overall Service Risk Exposure | [14]27]18]44 [46]41]36[42]31 11

Figure 6.5: An example of threat/service matrix.

=

] 23

2 2121213 19181518 | 83

] oloeloleleloe]l ole] =|2

2 HEHHEREEREEREE

£l |8|3|8|3|3|3]5]3]3]5
Threadl 4 L M|L
Thread2 3 L L
Thread3 2 LIMIM|LIL
Thread4 2 M MIimll LM
Thread5 2 L L|L LIL
Thread6 LILJ|L LIMIMIM|M
Overall Service Risk Exposure | [14[27]18]44 [46]41]36][42]31]11

Figure 6.6: An example of opportunity/service matrix.

6.3.4.2 Defining the Functional Requirements of Each Required System

During the definition of the non-functional requirements of each required sub-system,
its functional requirements will be also defined. For adequate definitions of the
functional requirements of each system-level component we use our adapted version
of the Strategic Dependency (SD) and Strategic Rationale (SR) models of the i*

130

6.3. RATIONALE INCREMENTAL AND ITERATIVE PROCESS FOR CBSD

modeling framework [170] as described in Section 6.2.

SD and SR diagrams are constructed iteratively. Figure 6.7 illustrates the build-
ing process of a SD diagram. It begins with the identification of an initial set of rel-
evant organizational actors interacting with the system-level component addressed.
Then, the dependencies among actors (i.e., Goal dependency, Softgoal dependency,
Task dependency and Resource dependency) are identified. At this point, a first
version of SD diagram is obtained and validated with stakeholders. Next, the actors
in the SD diagram will be rationally analyzed as depicted in the Figure 6.8 and, as
a result, a corresponding SR diagram is created. If new actors or new dependencies
have to be incorporated in the diagram, the process iterates.

e

Define organizational actors
interacting with the addressed
system-level component

UH

Determine the dependencies
among actors

[j.ﬂ

Validate the SD diagram
with the stakeholders

[Unaccepted]

[Accepted]

Figure 6.7: A SD diagram building process.

6.3.4.3 Defining the NFRs of Each Required System

This WorkDefinition focuses on the definition of the NFRs of each required system.
For adequate analysis of NFRs, we propose to use the NFR framework [53] (see
Section 2.2.2). A Softgoal Interdependency Graph (SIG) representing the NFRs of
each required sub-system will be created.

131

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR
CBSD

»
>
A

y

Identify the main goals of the
addressed system-level component

Decompose goals
requirements

Identify correlations

D and priorities

Identify possible means
that can fulfill goals

2)

Validate the SR diagram
with the stakeholders

[Unaccepted]

[Accepted]

Figure 6.8: A SR diagram building process.

Figure 6.9 shows the process of building a SIG. It begins with the identification
of the high-level NFRs that the system should meet (see Section 3.6.2 for quality
models). The identified NFRs will be represented as NFR softgoals at the top of the
SIG and they will be iteratively refined into more specific ones. At some point, when
the NFR softgoals have been sufficiently refined, it will be possible to operationalize
these NFRs. During the refinement and operationalization steps, contribution and
possible conflicts should be established, the impact of softgoals onto each other be
defined and priorities be identified. The SIG created will be validated with the
stakeholders.

132

6.3. RATIONALE INCREMENTAL AND ITERATIVE PROCESS FOR CBSD

The different degrees of desirability described above will be also used in associ-
ation with the non-functional requirements.

y

/

2

Identify NFR requirements

Decompose NFR
requirements

¢ Identify correlations
D and priorities
Identify possible

operationalizations

2)

Validate the SIG with the
stakeholders

[Unaccepted]

[Accepted]

Figure 6.9: A SIG building process.

6.3.5 COTS Product Identification Phase

The main objective of this phase is to identify and find all suitable and potential
COTS candidates. The main WorkDefinition of this phase is Searching for the COTS
candidates. This WorkDefinition is driven by the evaluation criteria which takes as
input high level requirements. It can be done by:

e searching the Internet for possible COTS candidates;

133

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR
CBSD

e getting recommendation of possible COTS candidates from external sources;
e reading product literature surveys and reviews.

At the first stage, the evaluation criteria do not need to be very detailed or for-
mally defined but it must be unambiguous. Therefore, this WorkDefinition can be
initiated as soon as the main features of the required components have been defined.
The output of this WorkDefinition is a list of COTS candidates for each required
component and a repository storing the general information of COTS candidates.
The general information includes name, domain, version, vendor, cost, license, tech-
nology, etc.

It is quite possible that among the COTS products, some extra functionali-
ties (not initially considered) may be available. These extra functionalities, upon
a careful consideration, might indeed be required. This introduces changes to re-
quirements. This feedback mechanism is then used to enhance the development
process.

6.3.6 COTS Product Evaluation Phase

This phase focuses on the evaluation of the COTS candidates. The main WorkDefin-
tion of this phase is Fvaluating COTS candidates. We define two levels of evaluation:
local and global. At local level, it concerns the evaluation of COTS products of each
individual sub-system. The evaluated COTS products for each sub-system are clas-
sified according to the anticipated fitness of COTS products to the sub-system’s
requirements if their mismatches are resolved under limited resources. At global
level, different combinations of COTS that make up the system are evaluated with
respect to the COTS interoperability and interfacing effort and cost. This evalua-
tion is necessary due to the fact that a product that fits in isolation might not be
acceptable when combined with other products.

Figure 6.10 depicts the process of COTS evaluation at the local level. The process
starts with the definition of a short-list criteria that will be used for filtering the
search results. The goal is to reduce the number of candidates for the subsequent
detailed evaluation and consequently reduce the time and effort needed for the whole
evaluation.

The following is an example of short-list criteria:

o Vendor size. Is the vendor too big to pay attention to us? Or is the vendor
too small to survive and provide consistent service?

e Domain knowledge. What are the target domain and market of the vendor?
Do they correspond with the company’s needs?

e Consultant service. Does the vendor provide consulting services? Does the
vendor cooperate with the consultant companies?

134

6.3. RATIONALE INCREMENTAL AND ITERATIVE PROCESS FOR CBSD

o Vendor’s reputation and financial position. Does the vendor have a good or
bad reputation? Does the vendor have a good financial situation or show any
sign of potential financial crisis?

e Price of software. Is the price of software acceptable?

If there are not any or too few candidates meeting the short-listed criteria, the
criteria will be redefined until there is an acceptable set of short-listed candidates.

After eliminating the COTS products according to short-list criteria, the short-
listed COTS components will be evaluated against the system requirements. More
information on each candidate has to be gathered. This involves preparing a well-
organized Request for Proposal (RFP) that effectively documents the organization’s
system requirements to the vendors. In our methodology, the RFP is generated from
a goal graph created based on SIG and SR diagrams which respectively represent
the non-functional and functional requirements of the system. The RFP will be then
sent to the qualified vendors. We propose in Figure 6.11 a template for documenting
the RFPs.

Based on the vendor RFP responses, the short-listed candidates are ranked on
how well they fulfill the requirements and three to five best fitting candidates are
selected to be further evaluated.

In our methodology, we suggest using the Weighted Score Method (WSM) decision-
making technique (see Section 3.5.1) to filter the COTS candidates and present re-
sults that make sense. On the other hand, we suggest using the gap analysis approach
[126] to evaluate the pre-selected candidates (see Section 3.5.3). This involves defin-
ing the mismatches between the system requirements and the COTS components as
well as their impacts on the project and the possible actions to handle them.

The mismatches analysis is undertaken through component testing due to the
fact that only the components testing that can allow us to understand better the
pre-selected candidates and also to verify the vendors’ claims. It also allows us to see
the interactions between features and to detect the mismatches introduced by the
interactions. Moreover, there are some evaluation criteria (e.g. security, accuracy,
response time, etc.) that can only be verified at runtime. Components testing is time
consuming, it is therefore recommended to avoid complex combinations of tests and
the idea of “testing everything”. Instead, it should focus on testing critical business
processes.

On the basis of the RFP responses and components testing, mismatches of each
pre-selected candidate are detected. The COTS component evaluation team also
needs to decide how to handle them. The decision is made according to the type
of mismatch. Based on the literature review, we find several types of mismatches
as well as the recommended actions to handle them as listed in Table 6.2. In our
methodology, if the recommended action involves adjusting the requirements, this
implies some modification on the SIG and the SD and SR diagrams and the mismatch

135

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR
CBSD

)
|
AN |
|
> I
|
. . |
Define ;1 short-llst A short-list :
criteria criteria I
| |
: : Feedback
Y N N vy D
SR diagram RN D__>@D > > ___>§ > >
_ 7
_---""Create a goal | Create a Request for Eilter search
graph Hierarchy Proposal (RFP) ARFP COoTS results A set of short-
graph i components listed COTS
! search result l components
Softgoal i [Else] i
Interdependency | |
Graph y | [OK] !
: -
| —
VA i "

Send the RFP to qualified

vendors
i AN
—————— >

Receive vendor RFP Documentation of the
responses short-listed COTS
_-~7 components

Select 3 to 5 best fitting
COTS components

l k
I

Analyse the mismatches .
. Mismatches
between the requirements analysis result
and COTS components Y

Figure 6.10: Local evaluation process.

is handled during the COTS selection process. Otherwise, if it involves tailoring the
product, the cost of handling this needs to be estimated. In this way, features pro-
vided by the COTS components might influence the refinement of goals which lead
to a very interactive and collaborative process. Moreover, the cost of mismatches
handling after the COTS selection will also be taken into consideration for the COTS
decision-making.

136

6.3. RATIONALE INCREMENTAL AND ITERATIVE PROCESS FOR CBSD

Hierarchy Criterion Priority SUP | MOD | 3RD | CST | FUT | NS
(2-10)
1 Goal 1 8
1.1 Sub-goal of goal 1 4
111 Criterion 1 2
1.1.2 Criterion 2 6
113 Criterion 3 4
114 Criterion 4 10
115 Criterion 5 8
116 Criterion 6 8
Priority : SUP: Supported as delivered " out-of -the-box™
10: Very High MOD: Supported via modifications (screen configurations,
8: High reports, GUI tailoring, etc)
6: Medium 3RD: Supported via athird party solution
4: Low CST: Supported via customization (changes to source code)
2: Very Low FUT: Will be supported in afuture release
NS: Not supported

Figure 6.11: Request for proposal template.

6.3.7 Decision Making Phase

The main WorkDefinition of this phase is Making decision. This WorkDefinition
involves making the decision on the COTS products selection as well as the action
plan to handle the mismatches based the COTS evaluation results from the previ-
ous phase. The result of the evaluation is a technical factor for making the decision.
However, the economic factor influences also this decision. The economic factor con-
cerns license acquisition cost, support and adaptation expenses, maintenance prices,
COTS procurement conditions, vendor guaranties, availability of training, availabil-
ity of vendors, and vendor’s reputation and maturity.

According to [34], using COTS components is the right solution when it lies at
the intersection of the three determinants of feasibility as depicted in Figure 6.12.
In other words, a COTS component is selected when it fits the project context:

e Technically. It has to be able to supply the desired functionalities at the
required level of reliability;

e Economically. It has to be able to be incorporated and maintained in the
target system within the available budget and schedule;

e Strategically. It has to meet the needs of the system environment including
technical, political and legal consideration.

137

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR

CBSD

Table 6.2: Types of mismatches and recommended actions.

Fulfill conditional

When there is a constraint
that has to be accom-
plished in order to fulfill
the initial goal.

Verifying the goal desir-
ability and the affect of
constraint to other goals
and the cost required to
fulfill the constraint be-
fore deciding to accept or
reject the product.

Fail

When the evaluated
COTS does not provide
any features to satisfy a
goal.

Tailoring the product in
order to add the feature
that fulfills the goal or ad-
justing the requirements,
it depends on the goal de-
sirability.

Hurtful

When an extra feature has
a negative impact over a
particular goal.

Tailoring the product in
order to disable the un-
wanted features.

Extend | Neutral

When an extra feature
does not interfere with the
achievement of any goals
nor the stakeholder want
it.

Ignoring this mismatch.

Helpful

When an extra feature
is useful and can be in-
cluded in the system re-
quirements.

Adjusting the require-
ment by adding goals to
the goal graph.

Differ

When the evaluated
COTS partially satisfies a
goal.

Tailoring the product or
accepting the mismatches
depending on their im-
pacts on the project.

6.3.8 COTS Customization Phase

This phase involves customizing the selected COTS products to be used in the

project context. This includes :

e parameter initialization, GUI screen and report layout configuration, security

protocols set-up, etc.;

138

6.3. RATIONALE INCREMENTAL AND ITERATIVE PROCESS FOR CBSD

Feasible

Figure 6.12: The determinants of a feasible COTS solution (from [34]).

e extracting source data from legacy databases, transforming source data into
target data and loading target data into the target databases;

e handling mismatches.

Indeed, the selected COTS rarely match perfectly all the requirements and ar-
chitectural constraints. Many of these mismatches are resolved after the COTS
selection. There are different types of mismatches and they require different actions
to handle them (see Table 6.2):

o A fail mismatch. When the selected COTS does not have any features to
satisfy a particular goal. Developers will develop the relevant functionalities
fulfilling the desired goal;

o A hurtful extend mismatch. When an extra feature has a negative impact over
a particular goal. Developers will disable this feature;

o A differ mismatch. When the selected COTS partially satisfies a particular
goal. Developers need to find the causes of mismatch and their possible so-
lutions. We propose an approach for analyzing such mismatches that will be
described in the rest of this section.

Our approach is a systematic, repeatable, agent-oriented process. Figure 6.13
depicts the relevant concepts of our approach and their dependencies using a UML
class diagram notation. The model is structured as following: the agent pursues a
set of goals. Each goal is realized through a series of capabilities executed by agents
in the form of a realization path represented by a Dynamic Diagram proposed in
[60]. In our context, we consider a capability as a high-level function that can be

139

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR
CBSD

Goal Pursues Agent
0..n 1
bv4 1
.\,Le.c-’
@e? Executes
—— 0..n
Realization Path
Capability Matches COTS Feature
0..n 0..n
pv4
66(\\6 e(\,\g‘?/
& &S
o o
<€ @

Dynamic Diagram| |Activity Diagram

Figure 6.13: Conceptual model of the proposed differ mismatch analysis approach.

matched to COTS features as defined in [10]. At a lower level, each capability could
be modeled by a UML activity diagram for further detail if necessary.

The process of the proposed approach for analyzing the differ mismatches of the
selected COTS consists of the two WorkDefinition:

e Defining realization path. For each differ mismatch that will be handled
by the COTS customization, we define the realization path for each partially
satisfied goal. A realization path is a series of capabilities executed by agents
in order to realize a goal. The corresponding capabilities will be listed in a
table with a name, informal definition and the name of the agent the capability
belongs to;

e Defining cause and resolution. Based on the realization path and the
documentation of the selected COTS features provided by the COTS vendor
and resulted from COTS feature testing, we define the causes of mismatches
and resolution to handle them. Causes of mismatches can come from not only
mismatches between COTS features and desired capabilities, but also interac-
tions between COTS features. Indeed, it is possible that desired capabilities
for realizing a goal can be matched with the COTS features but undesired
interactions between these features make goal partially satisfied. Resolutions
are envisaged on a case by case basis.

6.3.9 COTS Integration Phase

This phase focuses on the system integration. It consists of developing glueware
which is a type of software that can be used to “glue” or integrate software com-
ponents to form a seamless integrated system. In our methodology, this involves

140

6.4. ONTOLOGY ALIGNMENT

implementing our proposed MAS (see Section 5.1 for the architectural description
of the proposed MAS).

6.4 Ontology Alignment

The thesis deals with 3 different ontological frames:

(i) The first one is concerned with the problem analysis and represented using the
1* models with respect to the specifications we have defined in Section 6.2;

(ii) The second one is concerned with the solution design and represented using
the custom syntax and semantics defined in Chapter 4 and Chapter 5;

(iii) The third one is concerned with the description of the software process it-
self and represented using the syntax and semantics defined by the Software
Process Engineering Meta-Model (SPEM) [131].

Although the process description — which is an instantiation of (iii) — explicitly
links the analysis models (i) and design ones (ii); higher integration could be brought
through a formal alignment study between the elements of these two latter ontolo-
gies. More precisely, such a study would allow using the instance of the defined
elements of the ontology for problem analysis (i) to instantiate defined elements of
the design ontology. This would notably be useful for having the highest possible
alignment between concepts issued of the application domain and the software de-
sign. In line with this, partial forward engineering abilities could be automated.
Such a research nevertheless remains the subject of future research.

On the other hand, the alignment of (i) and (ii) with (iii) is a simple issue since
model elements of (i) and (ii) or entire models of the same frameworks are (and
can only be) represented in (iii) as WorkProducts. Indeed, (iii) is a meta-process
description language intended for process engineers that, through an instantiation, is
used to describe a particular software development process. Ontologies for describing
the problem analysis (i) or the solution design (ii) are thus artifacts of the process
input or output to human activities only. The i* models presented in the process
have to be created according to the i* ontology we have defined in 6.2. Similarly,
the ontology of COTS we have defined in Section 4.2 specifies the information of
each COTS component that the project team needs to know during the development
process.

6.5 Chapter Summary

Firstly, this chapter has presented the shortcomings we can draw from our literature
review on the CBSD and the specifications for our methodology with respects to
these shortcomings.

141

CHAPTER 6. TOWARDS AN AGENT-ORIENTED METHODOLOGY FOR
CBSD

Secondly, it has presented the adaption of agent-oriented techniques for system
analysis and modeling for our methodology.

Thirdly, it has described the process development of our methodology. It is an
iterative cyclic process wherein each cycle produces a deliverable increment of the
software with new COTS added to the system. A project may comprise several
development cycles. A cycle of our process development is composed of seven it-
erative phases including Business Analysis, Requirements Analysis, COTS Product
Identification, COTS Product Evaluation, Decision Making, COTS Customization
and COTS integration. A generic description and WorkDefinitions for each phase
have been given. For some WorkDefinitions, guidelines to perform them have been
provided.

Finally, it has exposed the ontology alignment in our methodology.

142

Chapter 7

Methodology Application

This chapter proposes an application of the process presented in the previous chapter
for the purpose of validation. It has been done on a case study issued of supply chain
management and more particularly outbound logistics (OL). In this case study, we
consider COTS as a third party component used to build the global system. We
firstly describe the outbound logistics. Next, we present the application of our
proposed methodology.

7.1 The TransLogisTIC Project

In august 2005, the Belgian Walloon Region introduced the Marshall Plan, a vast
economic investment to reinforce attractiveness and competitiveness of Walloons
companies in order to raise employment rate. This plan notably integrates poles
of competitiveness, and, among these poles, Logistics in Wallonia created in July
2006, which is concerned with transportation and logistics. Into this latest pole,
TransLogisTIC, proposed as a driving project, has officially started in March 2007.

Currently, the real-time visibility of information flows throughout the whole OL
chain fails to ensure competitive integrated logistics. However, decisions at Eu-
ropean level request for the development of multi-modal transportation, notably
through Eurocorridors as the “C” (Antwerp - Bale - Lyon) which would cross the
Belgian Walloon area. For this reason, the TransLogisTIC project has been built up,
with, as long-term main objective to develop combined, performing and complete
transportations in Walloon Region with transport by rail particularly promoted in
accordance with the European policy (see Marco Polo program). The project has
initially been planned on a 3 year basis with 14 million euro as overall budget and
has involved several complementary actors including 10 private companies and 5
universities and research labs.

The analysis of the socio-economic context in which TransLogisTIC takes place
has led to various concrete objectives, among which:

143

CHAPTER 7. METHODOLOGY APPLICATION

e The development of control systems tailored to the rail freight expectations;

e The development of real time innovative localizing solutions covering the whole
OL chain based on a new generation of positioning systems as well as on the
optimal and extended use of existing infrastructures;

e The development of an online collaborative logistic platform allowing chargers,
carriers, infrastructure managers and final clients (i.e. the major OL actors)
to share information for a better optimization of the logistic chain.

Our case study exclusively focuses on the last point especially through the work
developed by the Center for Supply Chain Management (CESCM) at the Louvain
School of Management (LSM) of the Université catholique de Louvain (UCL).

7.2 RecIProC Application

This section presents an application of RecIProC onto the development of an out-
bound logistics collaborative platform.

7.2.1 Business Analysis Phase

This phase consists of three main WorkDefinitions including Studying the business
context, Defining the scope of the project, and Analyzing strategic impacts. These
WorkDefinitions are mainly performed during the first cycle of the project. During
the following cycles, they are performed to handle the business changes. The result
from the business analysis phase serves as a basis for the following phases.

7.2.1.1 Studying the Business Context

The business context as described in this section is based on the interviews with a
set of actors that involved in the OL chain. These interviews have mainly focused
on business processes and the main objectives of the project.

OL is the process related to the movement and storage of products from the
end of the production line to the end user. In the context of our work, we mostly
focus on transportation. The actors of the supply chain play different roles in the
outbound logistics flow. The producer will be a logistic client in its relationship with
the raw material supplier, which will be consider as the shipper. The carrier will
receive transportation orders from the shipper and will deliver goods to the client,
while relying on the infrastructure holder and manager. In its relation with the
intermediary wholesaler, the producer will then play the role of the shipper and the
wholesaler will be the client.

Figure 7.1 summarizes the material flows between the actors of the outbound
logistics chain. The responsibilities corresponding to the different roles are:

144

7.2. RECIPROC APPLICATION

Supplier Producer Wholesaler Final client

Order

Shipper<+— « Client /I.._VCIient

\
\

‘\‘ Shippel‘/ _+Shipper /
Logistic \ N I
request fTransport ,' ,/'
\ : 1 //
A] PR
H T P
N Carrier 1] L7 o Infrastructure manager
‘\ TR
¥ R o .
Scheduler Coordination Operational planner
Strategic planner > Strategic planner

Figure 7.1: Material flows in the outbound logistics chain.

e The final client: This role is taken by an actor who has ordered a shipment
from a supplier and awaits its delivery. The client is generally not involved in
the choice of the carrier, but is impacted by the planned delivery date and the
delays that could result in the realization of the transportation.

e The shipper: This role is taken by an actor who needs transportation for
a shipment. The shipper has received an order from a client and has to de-
liver this order. The shipment has its own characteristic in term of volume,
transportation constraints, pickup and delivery dates, transportation mode,
and transportation price. The shipper will turn toward one or several carriers
to realize that shipment.

e The carrier: This role is taken by a actor owning transportation capacity who
receives transportation orders from shippers for the realization of shipments
to final clients.

— The carrier’s strategic planner: decides on the services that are of-
fered on the long term, on the use of infrastructure, on the logistic re-
sources to hold and on the client’s acceptance conditions.

— The carrier’s scheduler: orders transports to be realized, according to
the strategic network and constraints, coordinates with the infrastructure
manager and assign logistic requests to those transports such that the
delivery requirements are met.

145

CHAPTER 7. METHODOLOGY APPLICATION

e The infrastructure manager: This role is taken by an actor who owns
the logistics infrastructure that is needed by carriers such as hubs, rail tracks,
airports and docks. The infrastructure manager coordinates with the carrier’s
scheduler to offer the network for the planned transports.

The idea behind the system development is to favor these actors’ collaboration.
Indeed, collaborative decision will tend to avoid local equilibriums (at actor level)
and wastes in the global supply chain optimization, giving opportunities to achieve
the greatest value that the chain can deliver at lowest cost. The collaborative appli-
cation package to develop is thus composed of a multitude of aspects including the
development of applications and databases to allow the effective collaboration and
the use of flexible third party components providing well identified services.

7.2.1.2 Defining the Scope of the Project

The main objective of this WorkDefinition is to build a Strategic Services Diagram
(SSD) representing the big picture of the project. The SSD of Figure 7.2 overviews
the outbound logistics in terms of organizational services. All outbound logistics
actors depicted in Section 7.2.1.1 are represented as actors; COTS components we
want to integrate in the global applicative package are also represented as an actor.
These COTS components are listed as follows:

e The Fleet Management System (FMS) is computer software that en-
ables people to accomplish a series of specific tasks in the management of a
company’s vehicle fleet. It can include vehicle telematics (tracking and diag-
nostics), driver management, fuel management, vehicle maintenance and so
on;

e The Warehouse Management System (WMS) is a key part of the sys-
tems managing the supply chain. It aids in controlling the movement and
storage of materials within a warehouse and processing the associated trans-
actions, such as shipping, receiving, putaway and picking;

e The Enterprise Resource Planning (ERP) is an enterprise-wide infor-
mation system designed to support most of the business system. It maintains
in a single database the data needed for a variety of business functions such
as Manufacturing, Financial, Projects, and Human Resources;

e The Transportation Management Systems (TMS) is computer software
designed to manage transportation operations. It aids in determining the most
efficient and most cost-effective way to execute the movement of product(s).
The TMS will be further described in the case study., it includes various func-
tions such as:

146

7.2. RECIPROC APPLICATION

— Planning and optimizing of terrestrial transport rounds;
— Transportation mode and carrier selection ;
— Real time vehicles tracking ;

— Service quality control ;

Vehicle load and route optimization;

— Transport costs and scheme simulation.

Fach service of the SSD depicted in Figure 7.2 represents a complex work-flow
summarized below:

e The Treat Orders service represents the process to plan the coming material
flows by building up Logistic Requests on the basis of the customers’ orders.
The Shipper’s Ezxpedition Representative is the responsible actor;

e The Treat Expeditions service represents the process to build Transportation
Calls on the available Logistic Requests. The Shipper’s Expedition Represen-
tative is the responsible actor;

e The Plan Logistic Requests service represents the process to evaluate the
possibilities (eventually by relaxing constraints) of accepting the transmitted
Transportation Calls. The Carrier’s Orders Representative is the responsible
actor;

e The Manage Transports Services service represents the process to update
the Carriers’ Transportation Services offer in function of the general envi-
ronment (demand and capacity on particular origins and destinations, new
transportation possibilities, etc). The Carriers’ Planner is the responsible
actor;

e The Manage Transports service represents the process to plan the Car-
rier’s Physical Transports linked to its Transportation Services to answer to
the accepted Transportation Calls demand. The Carrier’s Scheduler is the
responsible actor;

e The Manage Resources service represents the process to ensure an adequate
planning of required resources (working teams, docks, cranes, etc.) for the
planned Transports. The Infrastructure Manager is the responsible actor;

e The Track Transports service represents the process to real time track trans-
ported goods and performs a series of activities such as dynamic replenish-
ments, alternative route calculation, etc. The Actor’s TMS System is the
responsible actor;

147

CHAPTER 7. METHODOLOGY APPLICATION

e The Manage Fleet service represents the process to accomplish a series of
specific tasks in the management of a carrier vehicle fleet as for example telem-
atics (tracking and diagnostics), driver management, fuel management, vehicle
maintenance and so on. The Actor’s FMS System is the responsible actor;

e The Manage Warehouse service represents the process to manage the move-
ment and storage of materials within the warehouse and processing the asso-
ciated transactions, such as shipping, receiving, putaway and picking. The
Actor’s WMS System is the responsible actor;

e The Transfer Orders service represents the process to manage all the input
data flows that must be transferred from the ERP system or to the actor ERP
system. The Actor’s ERP System is responsible actor.

e)
Treat

Expeditions Expeditions g, Shipper
Representative

')
©

Manage
Warehouse WMS

Orders S
Represenfative

2 Plan Logistic S
Requests
\o-P Scheduler .

Infrastructure
Manager

Carrier
Manage Fleet

Planner

Legend:
O —~ —
Actor Service Dependency link

Figure 7.2: Strategic service diagram for outbound logistics.

7.2.1.3 Analyzing Strategic Impacts

The objective of this WorkDefinition is to analyze the strategic impacts in term of
threats and opportunities that the project can face. For this purpose, we mainly

148

7.2. RECIPROC APPLICATION

study the long-term strategic impact of adopting the collaborative software package
through its relevant services for the concerned actors. Indeed, e-collaboration in out-
bound logistics can potentially deliver series of advantages as information sharing,
real-time decision making, online auctions and notably global optimization. Nev-
ertheless, this advantage and others can have drawbacks for some of the concerned
actors and they may thus not want to adopt it or, in case of adoption, have disastrous
consequences on their businesses.

Global optimization cannot be introduced as an opportunity to the involved
actors. However, that target has a particular interest for the environment in the sense
that optimized transports leads to less wastes which lowers negative externalities.
Indeed, since a variety of stakeholders are involved into the package, each of them
must be demonstrated its “local” advantage to adhere. More precisely, we identify
here the following opportunities and their associated weight:

¢ Real-Time Information Transmission. Information has become a strate-
gic resource of our modern times so that information availability through ad-
equate transmission represents a strategic tool for each of the actors involved
in the supply chain. The applicative package thus represents an opportunity
since it enables to lower information transmission time. This opportunity has
been given a weight of 5;

e Business Process Optimization. Re-engineering business processes no-
tably through standardized information transmission can lead to avoid wasting
resources (among which human ones) so that time and money can be spared.
This opportunity has been given a weight of 4;

e Symmetric Information. The use of the applicative package ensures that
when an actor has a specific demand of services it is transmitted to whole of the
concerned actors. For example the shippers’ logistic requests are transmitted
to whole of the carriers so that each of them can propose its transport services
until an agreement has been found. Information symmetry tends to lower the
eventuality that suppliers are unfairly favored. This opportunity has been
given a weight of 3;

e Unified Data Structures. The use of unified data structures ease the every-
day communications between supply chain actors and constitute a standard-
ized formalization that can serve as a legal basis. This opportunity has been
given a weight of 2;

e Integrated Information Portal. The use of a single portal for managing all
the aspects of an actors’ business eases the everyday transactions and lowers
maintenance costs so that resources can be spared. This opportunity has been
given a weight of 1.

149

CHAPTER 7. METHODOLOGY APPLICATION

The opportunities/services matrix presented in Figure 7.3 allows determining
a hierarchy among the services to determine the one which could benefit of the
most added value by adopting the collaborative software package solution. The
Manage Transports and Manage Resources services have an added value of 60 which
underlies the solution could potentially bring the most added value for carriers and
infrastructure managers. The matrix also shows that the identified opportunities are
adding substantial value to all of the collaborative application package’s services so
that each of the collaborating actors can potentially have an interest by the adoption
of the solution which however has only sense if all of them use it or at least feed it
with data flows.

(7]
[+
L
2|5
o |0
(] Nl o
- 5 [2] [2] 1)
_'S') g g g g e g n
7] cole|2|a]|3 2|t o
H Elol2|2|a|lc|8x|e
oy Ll |=|s|s|8|s|2|8|B
€ Blela|s|F |z |3 |s|x|@
£ oW |9 |o|a|a|alc(s|e
o ERE- c|lo|ld|@c|xX|c|R
o © © c c c c c o c c
o Pl IS |s|m |0 |® (S| |8
o (= = o I O = i =
Real-Time Information Transmition 5 (M H] | [M | M| M
Business Process Optimization 4
Symetric Information 3 (M| M| M|
Unfiied Data Structures 2 m M
Integrated Information Portal 1 M|M|[M
Overall Service Opportunity Added Value | [48[44[54[18] 60]60]32]30]16] 20

Figure 7.3: The opportunities/services matrix.

Global optimization and the adoption of a global applicative package can however
have a series of drawbacks. These are studied hereafter in the form of threats. More
precisely, we identify here the following threats and their associated weight:

e Loss of Local Optimality. Actors are continuously seeking for optimal
solutions within their business processes especially when competition is high
and concerns rather standardized services as for example for carriers. A global
optimization process could lead actors of the supply chain to a worse situation
that when they only managed their own business strategy so that they would
reject such a tool. This threat has been given a weight of 4;

e Loss of Local Autonomy. The autonomy of an actor refers to its capability

150

7.2. RECIPROC APPLICATION

to make and influence decisions. The provided information of an actor to
the other can lead its autonomy to be adjusted in one sense or the other so
that it can be an opportunity or a threat (we nevertheless only consider the
“threat side” here). In other words, increased transparency can lead to a loss
of autonomy. This threat has been given a weight of 3;

e Transmission of Strategic Information. By advertising all of the trans-
portation offer and demand, one could determine information that the com-
pany’s would prefer to remain confidential. This threat has been given a weight
of 3;

e System Intrusion. An intrusion takes place when a user of an information
system takes an action that he is not legally allowed to take. The intruder may
come from outside, or it may be an insider exceeding his limited authority when
taking action. The intruder’s actions may be detrimental to the health of the
system or to the services it offers. This threat has been given a weight of 2;

e Data loss. Facing huge data transfers between actors some required data can
be lost or never furnished. This threat has been given a weight of 2;

e System Failure. The information system may be down and cannot be used
for some time. This threat has been given a weight of 2.

The threats/services matrix presented in Figure 7.4 allows determining a hier-
archy among the services to determine the one which is the most exposed to risks.
The Manage Transports service has an overall risk of 46 which underlies risks are
potentially highest for carriers. The matrix also shows that the identified threats
have an impact on all of the collaborative application package’s services so that each
of the collaborating actors has to overview the drawbacks and compare them to the
potential benefits to run its cost/benefits study.

The strategic analysis of the identified services leads to the following conclusions:

e adopting the collaborative software applicative package with the services de-
fined in the SSD presents opportunities and risks for all of the identified actors;

e carriers have the highest implication since they can take the highest added
value of adopting the services but also face highest risks. Adopting the solution
can thus be of primary interest for them but they have to set up operational
solutions to avoid that threats become executed which has an operational cost.
A more sophisticated cost/benefit can then be run by each of the companies
playing the role of an actor on the basis of the services subscription fees,
opportunities wins and threats’operational costs.

151

CHAPTER 7. METHODOLOGY APPLICATION

Manage Transports Services

Plan Logistic Requests

e

2 % § S (7}

3 al3|2]5] |e
£ £ 2lelel2|s |8
2| |53 s18is|g|8|§
g Ble Fle (3]s | |9
=| [O|w 55|55
s| |88 SlS|ElS|E|c
= 0|0 s|5|S|s|5]|s
= = P s|s|=|F|=|F

Loss of Local Optimality 4 L M| L
Loss of Local Autonomy 3 L (L |
Transmission of Strategic Information 3 LIM[M]LJL
System Intrusion 2 M|{M|{M| LM
Data Loss 2 L L{L LjL
System Failure 2 L{L]|L LIM|IM|M|M

Overall Service Risk Exposure | [14]27[18] 44| 46]| 41]36]| 42[31] 16

Figure 7.4: The threats/services matrix.

7.2.2 Requirements Analysis Phase

This phase focuses on defining the system requirements. It consists of three main
WorkDefinitions including Defining the integrated system architecture, Defining the
functional requirements of each required system, and Defining the NFRs of each
required system.

7.2.2.1 Defining the Integrated System Architecture

Different software components involved in the outbound logistics system will be
integrated within well-defined system architecture. In this case study context, the
outbound logistics system architecture is an instance of our proposed architecture
for COTS integration (see Section 5.1).

Figure 7.5 depicts the social dimension of the MAS layer of the outbound logistic
system. As we can see in the figure, each outbound logistics system’s constituting
components is wrapped inside a wrapper agent. There thus four wrapper agents:
ERP, FMS, WMS and TMS. There is a user agent representing each user; it can be a
Client, a Shipper, a Carrier or Infrastructure manager, for the three main
roles involved in the outbound logistics system.

152

7.2. RECIPROC APPLICATION

Service
provider

User request Request

User request’s

e //Userk Qe
> A
o

&L A—
o %

Wi
(%
’])
Shipper @ @ Client &)
Carnier Infrastructure /
manager @

ERP TMS FMS WMS

Legend:

OO0 O L1 ——

Role Agent Goal Resource Task Dependency link

Figure 7.5: Social dimension of the MAS layer for the outbound logistic system.

7.2.2.2 Defining the Functional Requirements of Each Required System

In our framework, the SD and SR diagrams are used to define the functional require-
ments of each system-level component identified and modeled in the SSD. Figure 7.6
documents the strategic dependency diagram issued of the organizational modeling
and requirements engineering for developing the service Track Transports offered by
the TMS. It depicts the relevant actors and their goals, tasks and resources depen-
dencies involved into the Track Transports service.

As illustrated on the SDD of Figure 7.6, TMS components are involved in the
realization of the goals:

e Vehicle load and route to be optimized, Events to be handled and Transports
to be followed up for the carrier;

o Carrier to be located for the shipper;

e Delivery date to be informed for the client.

The desirability of each goal is listed in Table 7.1. These goals must be fulfilled
otherwise the success of the project will be strongly compromised. These goals will

be used to identify and filter the COTS TMS available in the market.

153

CHAPTER 7. METHODOLOGY APPLICATION

Table 7.1: The desirability of goals to be fulfilled by TMS.

Vehicle load and route to be optimized Very high
Events to be handled Very high
Transports to be followed up High
Carrier to be located High
Delivery date to be informed High

The SRD of Figure 7.7 further documents the actors’ rationale. Notably, we
find the task Select most adequate transport, which is aimed to select the best fit-

ting transport offer on the basis of some defined requirements and under defined
constraints.

Goods to be Cauer

transported

X)
78
O

Services to 2

Y
be selected W,

Goods to be¥
transported - . - . . .
Subscribe Unsubscribe Service Vehicule Transports Events to
services services information load and to be be handled
Q route to be followed up

optimized

Carrier to be
located

R

Client

vy,

4
(D O

Delivery date
to be informed

>

(@M
(§N

‘ 5 - ° T™MS
Infrastructure

Manager Transport
plans
Legend:
O I:l O D Dependency
Actor Resource Goal Task link

Figure 7.6: Strategic dependency diagram modeling Track Transport service.

154

7.2. RECIPROC APPLICATION

‘ be selected

Q) Goods to be

0 transported

Goods to bey

transported .

Carrier to be

K located
‘ e
Client Delivery date

to be informed

Infrastructure -

Manager Transport
plans

)

Subscribe Unsubscribe
services

Q

Y,

)]

| Carrier

Treat transport

Define called
transport

services
Check Realise

|
|
|
|
|
|
|
|
:
|
: feagibility transport
|
|
|
|
|
|
|
|
|
L

: called
services v
Schedule g 0“';()‘
shipments transports
X Service
information
Vehicule load Eventsto Transports to
and route to be handled pe foljowed up
& be optimized
_______ N
Notify Manage Select most Real time
shipment services adequate vehicule
date

0l
Compute Compare
transport alternative
allocation routes

|
|
|
|
|
l
|
transg‘ rt tracking :
|
|
|
|
|
|
|
|
|
|
|

Legend:

O o O

Actor Resource Goal

O

Task

Dependency Decomposition L !

link

link Actor boundary

Figure 7.7: Strategic rational diagram modeling Track Transport service.

7.2.2.3 Defining the NFRs of Each Required System

The NFR goal graph of Figure 7.8 represents the non-functional aspects that the
TMS should fulfill or at least contribute to. Non-functional requirements include
Security, Flexibility and Adaptability.

155

CHAPTER 7. METHODOLOGY APPLICATION

After posing these highest level non-functional requirements as softgoals to sat-
isfy, we tend to refine them into sub-goals through AND and OR decompositions and
the interdependencies among the goals are also studied as shown in Figure 7.8. The
NFR Security was refined into Authorization and Data encryption. The NFR Flex-
1bility was decomposed into integrability of data base, wrappability of product and
extensibility of new modules. The NFR Flexibility has a positive influence to the
NFR Adaptability which has been decomposed into vendor support, developed in a
standard technology, source code openness, and configuration. The authority to read
source code openness operationalize goal can partly satisfy the source code open-
ness goal which can be fully fulfilled by the authority to modify code operationalize
goal. The desirability of different goals is listed in Table 7.2. The NFRs will be used
to evaluate the COTS candidates.

Flexibility Adaptability

Integra;i iy of Wrappability of Extensibility of Yendor Suppoﬂstaaz\;(ljotzeci ina Source code Configuration
data base product new modules 9y openness

s N
<D BT g
D
Authority to read Authority to
source code modify code

Authorization Data encryption
Legend:
+ 4+ + - --
<y D R e e
NFR Operationalizing AND Make Help Hurt Break
goal goal decomposition contribution contribution ¢ontribution contribution

Figure 7.8: NFRs of the TMS.

7.2.3 COTS Product Identification Phase

Several information sources, such as online search engines (e.g. Google, Yahoo), as
well as specialized websites that list COTS software packages (e.g. www.vendor-
showcase.com) can be used to identify possible COTS candidates. Table 7.3 lists
some relevant TMSs found in the market.

156

7.2. RECIPROC APPLICATION

Table 7.2: The desirability of global NFRs.

Authorization High
Data encryption High
Integrability of database Very high
Wrappability of product Very high
Extensibility of new modules High
Vendor support High
Developed in standard technology High
Authority to read source code Low
Authority to modify code Low
Configuration High

Table 7.3: TMS products found in the market.

Oracle Transportation
Oracle www.oracle.com
Management
IBM .Sterhng Trans- IBM Sterling Com- ‘
portation Management www.ibm.com
merce
System
AP Tr i
SAP S ansportation WWW.sap.com
Management
TRIS TMS INTRIS Group www.intris-group.com
i2 T tati lu-
1 ransportation Solu i2 Technologies www.i2.com
tion
Control Tower Informore www.informore.com
Transportation Lifecy- | Manhattan Associates,
www.manh.com
cle Management System | Inc.
NaviTrans Transport Young & Partner wWwWw.youngpartners.com

7.2.4 COTS Product Evaluation and Decision Making Phases

During the evaluation phase, the project team involves filtering search results ac-
cording to short-list criteria and those that do not provide any possibilities to fulfill
the very high desired goals, and evaluating the pre-selected COTS products. The
result of the evaluation forms a technical factor for the project team to select a
COTS product. However, the economic factor influences also this decision.

For illustration, in this case study we suppose that a COTS TMS is selected.
Table 7.4 documents the goals that the selected TMS cannot totally fulfill and the

157

CHAPTER 7. METHODOLOGY APPLICATION

action to handle the mismatches. Mismatches that will be handled by tailoring the
TMS product will be further analyzed in customization step of the COTS-based
system development life cycle.

Table 7.4: Mismatches documentation of the selected COTS TMS.

Very strong impact
Iransport lanl Differ: Process | O 'the .SuCC?SS of the Tailoring ~ TMS
and route opti- level project since it concerns roduct
mization the very high desired p
goal.
Very strong impact
. Differ: Process | O~ .the Sueeess of the Tailoring ~ TMS
Event handling lovel project since it concerns roduct
the very high desired p
goal.
Very strong impact
. on the success of the —
Transports to be | Differ: Process . . . Tailoring ~ TMS
followed up level project since it concerns product
the very high desired
goal.
N -
Carrier to be lo- | Differ: Param- ot strong impact Tailoring ~ TMS
on the success of the
cated eter level . product
project.
Developed in Some non-standard
standard technol- | Differ data types are used but | Ignoring
ogy it is acceptable.
Authority to read Fail Source code cannot be Ienorin
source code read by the users. & &
Authority to Fail Source code cannot be Tenorin
modify code modified by the users. & &

7.2.5 COTS Customization Phase

In this case study, we focus on the application of our approach for analyzing the differ
mismatch. For illustration, we present the differ mismatch analysis of the Transport
load and route optimization goal. As illustrated in Figure 7.7, this goal is realized by
the Select Most Adequate Transport task. We therefore define its realization path as
depicted in Figure 7.9. The capabilities involved in this realization path are listed

158

7.2. RECIPROC APPLICATION

in Table 7.5. In our

Carrier TMS

— N LogisticRequestSent
‘— - »—(CreatLoglstlcRequest/

> EvaluateLogisticRequesD

T

[CorrespondingServicesFound
|

AlternativeRoutesSent

\
I
SelectRoute j¢-—-—---—————--——————— {Checklnfrastrud':tu reAvaiIabiIi@

i ;

A 4
SelectedRouteSent . .
@ecordServncesRequnre(D
T

ITransportsRequired
|

y

1 1

| |

| |

| |

v

@ookRequiredResources} @efineShipmentDat@

T T
! | DepartureAndArrivalDate
I * Estimated
|
|
! NotifyShipmentDate
|
Y ¥

T
|

®

Figure 7.9: Realization path of the Select most adequate transport task.

Based on the selected COTS TMS’s documentation acquired from the vendor and
functional testing, we find that the selected COTS TMS does not provide the fea-
tures to check the resources availability and to book the required resources at the in-
frastructure managers CheckInfrastructureAvailability and BookRequired Resources
features.

Figure 7.10 illustrates the selected COTS TMSs scenario for the Select most ad-
equate transport task. Consequently, the two evoked features have to be developed
for adequate inclusion into the software component so that it can achieve the doc-
umented success scenario. The implementation of this inclusion is not in the scope
of our research since it is envisaged on a case by case basis. For the other features,
the COTS TMS does already provide the same functional behavior and can be used
as such or if required overloaded.

159

CHAPTER 7. METHODOLOGY APPLICATION

Table 7.5: Capabilities relating to the realization path.

CreatelLogisticRequest Creating a logistic request. Carrier
EvaluateLogistic- Computing the alternative routes to TMS
Request fulfill the logistic request.

Checking the availability of the re-
sources used by each alternative
route before sending possible alter- | TMS
native routes fulfilling a logistic re-
quest to the carrier.

CheckInfrastructure-
Availability

SelectRoute Selecting an alternative route Carrier

Recording the required resources on
RecordServiceRequired | each specific connection of the se- | TMS
lected route.

Booking the required resources to
BookRequiredResources fulfill the transport at the corre- | TMS
sponding infrastructure managers.

Evaluating the departure and ar-

DefineShi tDat . TMS
efineShipmentDate vival date.
Notifying the shipment date to cor-
NotifyShipmentDate responding infrastructure managers, | TMS

shipper and final client.

7.2.6 COTS Integration Phase

In our methodology, this phase involves implementing our propose MAS (see Section
5.1. By following the implementation model that we has proposed in section 5.2,
the developers primarily need to:

e specify the Gateway agent in servlets that will connect with the MAS;

o define the user requests that can be handled by the MAS in an XML file (see
code extract 5.16 for the sample);

e define the business rules to be associated with the agents’ capabilities;

e define in XML files the services offered by each Service provider agent, i.e.
ERP, TMS,FMS and WMS agents (see code extract 5.24 for the sample);

o define the BeanShell scripts to be executed in the RealizeRequest behaviors;

e define the proactive actions for each user agents, i.e. Shipper, Carrier and
InfrastructureManager agents.

160

7.3. CASE TOOLS

Carrier COTS TMS

. LogisticRequestSent .
.————»@reatLoglstlcReques} Jisticreques =€va|uateLoglstlcRequesD

SelectRoute < AlternativeRoutesSent
< A

SelectedRouteSent

;KRecordServicesRequire@

T
:TransportsRequired
|

4
@efineShipmentDat@

: DepartureAndArrivalDate
! Estimated

\
@otifyShipmentDat@

T
|

°

Figure 7.10: The selected COTS TMS’s scenario for the Select most adequate trans-
port task.

7.3 CASE Tools

Computer-Aided Software Engineering (CASE) tools are a kind of software that
provide the assistance to perform the activities involved in various life cycle phases
of a project. In this section, we describe the CASE tools that can be used to support
some WorkDefinitions in our COTS life cycle process.

7.3.1 DesCARTES

[80] provides an exhaustive list of the available i* tools. According to the com-
parison of these tools [79], Design CASE Tool for Agent-Oriented Repositories,
Techniques, Environments and Systems(DesCARTES) is the tool offering the most
exhaustive set of functionalities. It is a plug-in for the Eclipse IDE (Integrated De-
velopment Environment). It supports diagram edition of various models including i*
models (Strategic Dependency and Strategic Rationale models), NFR models, UML
models, and AUML models in the context of Tropos and I-Tropos developments.
At the analysis level, DesCARTES provides:

161

CHAPTER 7. METHODOLOGY APPLICATION

e an i* editor for editing i* Strategic Dependency (SD) and Strategic Rationale
(SR) diagrams;

e an NFR editor for editing Softgoal Interdependency Graph (SIG);
e an use-case editor for editing UML use-cases and business use-cases diagrams;
At the design level, DesCARTES provides:

e a structural diagram editor for editing enhanced UML class diagrams with
agent concepts;

e a dynamic diagram editor for editing UML-like activity diagrams and UML-
like statecharts;

e a communicational diagram editor for editing UML-like sequence diagrams;
e social patterns templates for software design reuse.

Moreover, DesCARTES provides advanced project management capabilities, par-
ticularly in the following aspects:

o Time Management through a Gantt charts editor as well as an effort estimation
tool implementing Use Case Points, Goal Points and COCOMO II models;

o Risk Management through a risk identification and traceability tool;
e Quality Management through a quality identification and traceability tool;

o Configuration and Change Management through a requirements traceability
tool.

In our research context, we have extended DesCARTES to support our extension
of the i* model, i.e. the Strategic Service (SS) modeling. Specifically, we have
extended the existing i* editor of DesCARTES to support SS diagram editing. In
addition, we have added the business process modeling feature, i.e. Business Process
Modeling Notation (BPMN) modeling [75], to DesCARTES.

7.3.1.1 Extension of the i* Editor

DesCARTES has included an i* editor for SD and SR modeling. We have extended
it in order to support the Strategic Service modeling. The reasons behind the use

of the SS model in our methodology has been described in Section 6.2. Figure 7.11
illustrates a SS modeling using DesCARTES.

162

7.3. CASE TOOLS

& DesCartes - Project/SSD. dis - Eclipse SDK. EFEX
File Edit Wavigate Search Project Field Assist Run Window Help

Hatl= RS R W % G- [DesCartes

I Q)= @~ o] ST+ NN A 7 % ® S] i*elementsicons bar &' v

[Projects tree view % =0 @ *S5D,dis 53 fc:' *SDD.dis @ *SRD.dis =0

EEC: H =

=T o il

(== Architectural design p/ ﬁ\
(2 Deployment Servicel

(= Detalled design
(= Early requirements

- &) SDD O
&) SRD Agent! A Agent2

5] 55D

(&> Late requirements

[Riskmanagement

[#- <= Elements Service3

5% outline 53 =0

<2
D/

[«]

4 Il

Main |

Figure 7.11: The i* editor in DesCARTES.

7.3.1.2 The BPMN Editor

The Figure 7.12 illustrates the business process modeling (BPMN) editor that we
have included into DesCARTES. We can find the BPMN elements for their insertion

into the drawing zone at its left side.

7.3.2 Hierarchy Graph Modeling

In our methodology, we also need to model goal graph and component feature models
which are in the form of hierarchy graph. We have developed a tool for hierarchy

graph modeling. This tool allows the user to:

e create a blank new hierarchy graph;

e create a quality model based on the C-QM quality model or the ISO 9216

quality model (see Section 3.6.2 for quality models);

e open the model previously saved.

Figure 7.13 shows the hierarchy graph editor implemented. We find:

e a thumb-index allowing the users to switch from an edited diagram to another

(1);
e a buttons bar (2) composed of:

— a button to add a new node to the tree;

163

CHAPTER 7. METHODOLOGY APPLICATION

= DesCarles - essailcase study.bpmn - Eclipse SOR lfi=ur 4]
Fle Edt View Havigate Search Project FieldAssist Run Window Help
MrEE Q- e SN P g 100% [v| E | 2 Descartes | >
%] Projects tree view 37 =B L'Ej BRMM Editor 2 =8
|| Iy select Customer 1]
marc il Efiersies
Fiows »
% @ = l
— 1 Hormal Flow
Media Shop [~
Media Suppier I Conditional Flow Consut Catalog
Check Product Availabili | Defauit Flow 3
Check Product Avalabil = =
[5 check stock | Doy
Const Gakalog [poots and swi...

Deiiver Ordered Produc
Order Trems by Phone | [__) Activies
Order Items in Person g
Order Media Ttems L)
Order Products
[= Produce Media

Looping Task. Ll

fd MuliplCieate an erpty tasy

Receive ltems) Compensation
Receive Media Items (ad) Task
Receive Products (g JEmeey
Send Media A= i:bp""ess
Send Ordered Ttems () Sub"‘;"‘me " N
Update Catalogue 1 (o) Compensation X Wedia Shop
[=) Update Catalogue 2) STRee N
vpdte e stk ||| (o loale \ }
<l b =) Multple A (Check Provuct Avail_ Send Ordered tems
— = = SubProcess
oZ Outline 23 (=}
I <> Gateways
(O start Events
Ocat(hm Interme... Qrder Media tems Recaive Mecia tems Update Catalogue 1
(&) Throwng Interme...
~
O End Events < | (2]
o* BPMN elements m)

Figure 7.12: The BPMN editor in DesCARTES.

— a button to edit the selected node;

— a button to remove the selected node from the tree;
— a button to remove all the nodes of the tree;

— a button to save the graph;

— a button to export the graph into a Excel file. The excel file is generated
according to the RFP template that we have defined. Figure 7.14 shows
the instructions for the use of our RFP template;

— a button to save the graph as an image.
e a zone displaying the content of the edited graph in tree form;

e a zone displaying the hierarchy graph with a dynamically allocable scroll re-
gion(4).

7.3.3 Analyzing the RFP Response

We have developed a VBA program for analyzing the RFP response. Figure 7.15
depicts the worksheet that contains a button for analyzing the RFP response. When
the button is clicked, the user is required to specify the name of worksheet containing
the RFP response. The analysis result is displayed in this worksheet as illustrated in

164

7.3. CASE TOOLS

[Hierarchy Graph Modeling -
File

Project1 goal graph % ‘ 1 |

add [Edit Retove Clear [save Export to Excel SaveGraph 2
9 [Project! onal graph [=]
¢ 3 Goall (Very High (VH)
D Goall.1 (High (H) Projectt goal graph
[Goali 2 (High (H)
¢ [Goal2 (High (Hy)
[Goalz 1 (Medium (M)
[Goal22 (Low)
[0 Goalz 3 (Very Low (L))
9 [Goal3 (Very High (vH)
[Goalz 1 (very High (VH))
[Goala.2 (High HY)
[Goalz 3 (Medium (M)
[Goala.4 (Low L)

Figure 7.13: Editing a hierarchy graph.

Figure 7.15. The analysis result allows the user to see how well a COTS component
meets the selection criteria.

®EA9- £ RFP Templatexls [Compatibility Mode] - Microsoft Excel o B R
g Home Insert Page Layout Formulas Data Review View Developer Nitro PDF Professional [~) g o @ R

D36 - E]
= =

1
Fll Request for Information/Proposal
3
4
5
6 Format
7 = Tne top of the RFltab contains six response columns.
8
9 User Responses
— = Use the Priority column o indicate how
12 Priorities EgTT important a particular crierion or entire group
= L/Eﬂ/ ';lgh =10 = of riteria {module o category) is for your
igh = zati

Prioriy 10 i most important

RF| Example

18 Vendor Responses
= Complets the RF| worksheet by placing an X in the appropriate
19 column for each criterion.
* The Xs must represent the current state of a product or
20 service.
2
2
23
24
25
26
27 1118 Criterion 8

=

28
M 4 » M Instructions - COTS's result Result analysis (] 1« _u |
Ready | Saalllock [Em@m 100 =)

(+)| ™

Figure 7.14: Instructions for using our RFP template.

165

CHAPTER 7. METHODOLOGY APPLICATION

-5 RFP Template.xls [Compatibility Mode] - Microsoft Excel o B R
Home | Inset Pagelayout Formulas Data Review View Developer Nitro PDF Professional a@o@ R
W45 - = ~

A B C D E F G H | J K L M

Iy

VH 1 1 0 0 0 0 0 SUP [Supported as deiivered “out-of-the-box’

MOD [Supported via modifications (screen configurations,
H reports, GUI taiiering, etc)

1] SRD |Supporied via a ihird parly soliion

1.

L ST [Supporied via (changes ta source code)
VL FUT [Wil be supported in a fuure release

NS [Wotsupport=d

Prierty |0 to 10, where 10 is most important
Analyze landatory [Ves, only for “must-nave” factors
10
il . L.
12 Very high priority goals High priority goals Medium priority goals

msup msu? msue

mMOD EMoD mMoD

m3RD u3RD W3RD

mcsT mcsT mcsT

mFUT wFUT mFUT

NS

- Low priority goals Very low priority goals

msup msup

= MoD =MOD
u3RD =370
mcsT mcsT

mFUT mFUT

>
W 4 » W[Instructions .~ COTS's result | Result analysis /%3 JIENI i Tl

] >
Ready | Seroll lock P | [FO@m w0 &

Figure 7.15: A simple example of RFP response analysis result.

7.3.4 Components Management System

In the context of our methodology, the project team needs to have a Components
Management System (ComMS) so that they can easily see the information of the
COTS components. We have developed such system using Ms Access. Our CMS is
developed based on our component meta-model that we have presented in Section
4.2. This system allows user to:

e to edit and view the information of a component including name, cost, version,
programming language, vendor name, domain name, component type, list of
supported platforms, file name storing information of its quality, file name
of the feature model representing its features and file name containing API
documentation (see Figure C.1);

e to search for components that correspond to the search criteria composed of
domain, type, platform and programming language (see Figure C.2). Figure
C.3 presents the search result. The result can also be printed as illustrated in
Figure C.4;

e to view the list of components per vendor (see Figure C.5);

166

7.3. CASE TOOLS

e to print the list of components grouped by vendor (see Figure C.6);

e to view the list of components per domain (see Figure C.7);

e to print the list of components grouped by domain (see Figure C.8);

e to view the list of components per type (see Figure C.9);

e to print the list of components grouped by type (see Figure C.10);

e to view the list of components per platform (see Figure C.11);

e to print the list of components grouped by platform (see Figure C.12);

e to view the list of components per programming language (see Figure C.13);

e to print the list of components grouped by programming language (see Figure
C.14);

e to edit and view information of a vendor including (see Figure C.15):

— vendor name;

— contact phone number;
— vendor website;

— contact email address;

— vendor size of the vendor: Too big to pay attention to us, Too small to
survive and provide consistent service, Fit to us or Unknown;

— vendor’s reputation: Good, Bad or Unknown;

— vendor’s financial position: Good, Bad or Unknown;

— consultant service: vendor offers consult service or not;
— list of target domains and market of the vendor;

— vendor address: number, street name, city and country.

e to print the list of vendors (see Figure C.15);

e to edit and view information of domain, type, platform and programming lan-
guage that will be associated with components and vendors. Figure C.17 shows
the form for editing platform. It consists of editing its name and description.
It is the same for domain, type and programming editing forms.

167

CHAPTER 7. METHODOLOGY APPLICATION

7.4 Chapter Summary

This chapter has presented the application of our proposed methodology onto the
development of an outbound logistics collaborative platform. Specifically, we have
presented:

e the use of (SSM) for modeling the big picture of the project and for strategic
reasoning about the project;

e the definition of system requirements using the i* and NFR frameworks;

e the use of our approach for analyzing differ mismatches during the COTS
customization phase;

e definition and implementation of the integrated system architecture based on
our proposal.

It has also presented the CASE tools that have been developed to support some
WorkDefinitions in our development process. Indeed, we have presented:

e i* NFR, Use-Case, and BPMN editors in DesCARTES;

e hierarchy graph editor;

RFP template;

RFP generator from a hierarchy graph;

a VBA program in Ms Excel for analyzing the RFP answers from vendors;

e a Component Management System for managing components’ information.

168

Part V

Conclusion

169

Chapter 8

Conclusion

This chapter concludes this research work by presenting our main contributions and
points to future work.

8.1 Summary of Contributions

This thesis aimed to contribute to the improvement of CBSD. We have conducted
our research works for this purpose. The results of our works constitute contributions
to the field of CBSD research.

For a common conceptual basis in CBSD, we have defined a meta-model illus-
trating the relevant elements of a COTS component. It indicates the informations
that a component user needs to know in order to select appropriate components and
to properly integrate the selected ones into the system. A component management
system can be built based on this meta-model. With such a system, components
can be found and reused effectively.

From the COTS integration aspect, we have defined a system architecture for
COTS dynamic integration. Indeed, existing OOP frameworks for COTS integra-
tion such as OMG CORBA, or Microsoft DCOM fail to support COTS dynamic
integration. In these frameworks, the integrated components are statically bound,
and collaboration mode among them is fixed so that it cannot be adjusted and mod-
ified especially when the system is running. Consequently, they do not help the
developers to handle changing requirements and component substitution. For this
reason, we have designed a system architecture that can be customized with respect
to the project-specific business logic and adapted to business rules and component
substitution.

In order to benefit from the advantages of agent-oriented programming, our pro-
posed system architecture is centered on the agent concept. It is designed to be
able to support COTS dynamic integration. It is a wrapper-based multi-agent ar-
chitecture. Logically, it is composed of vertical architectural layers: GUI, MAS,

171

CHAPTER 8. CONCLUSION

and Component layers. The MAS is in charge of realizing user requests from the
GUI layer with respect to available components at the component layer. We have
defined a meta-model illustrating the main parts constituting our MAS and char-
acteristics of our agents. Agents that we have identified in our MAS are further
specified in multiple complementary dimensions illustrating the different aspects of
the proposed MAS. In order to ground our proposed system architecture, we have
implemented it using the JADE framework. This constitutes an implementation
model to developers.

From the development process aspect, we have established a rationale incremen-
tal and iterative process for CBSD (RecIProC). We have not only provided a high
level description of the process but also some practical models and guidelines for
accomplishing works defined in the process. Concerning the practical models, we
firstly propose to use the SSM for modeling the most aggregate static view of the
project for adequate identification of different individual systems. For each system,
the SDM and the SRM are used to model its functional requirements; the SIG is
used to model its non-functional requirements; and the hierarchy goal graph is used
to model its selection criteria. We have also defined some guidelines for perform-
ing some works in the process, i.e. a guideline for analyzing strategic impacts of
adopting the software project, a RFP template, a guideline for COTS evaluation, a
mismatch analysis approach, and guidelines for constructing the SSD, the SDD, the
SRD, and the SIG.

RecIProC is a business-driven development process. It starts with the business
analysis phase. It provides the ability to develop IT solutions that meet the business
needs and strategies and can be easily adapted to the business changes.

RecIProC addresses diverse issues related to CBSD including business analysis,
requirement analysis, COTS evaluation and selection, and COTS mismatches han-
dling. For business and requirements analysis, RecIProC provides practical models
(i.e. the SSM, the SDM, the SRP and the SIG) as well as guidelines to perform
them as evoked earlier. For COTS evaluation and selection, it provides an approach
that deals with different dimensions (i.e. functional requirements, NFRs and non-
technical aspect). It is suitable for both single and multiple COTS selections. It is
originally proposed for multiple COTS selection, but adaptable for a single one by
conducting only the COTS evaluation at local level in case that the selected COTS
will be used as an isolated system. Otherwise, the COTS evaluation at global level
helps for defining the COTS that best fits with other existing or in-house devel-
oped systems. For COTS mismatches handling, RecIProC provides the ability to
address mismatches between the COTS products and system’s requirements and ar-
chitectural constraints. We model them in terms of goals, and these goals are then
matched with the COTS features during the evaluation phase. Some mismatches
detected are handled directly during the evaluation and some others will be handled
after the selection.

172

8.1. SUMMARY OF CONTRIBUTIONS

RecIProC is an iterative cyclic approach. Each cycle produces a deliverable in-
crement, of the software with new COTS added to the system. A RecIProC cycle
consists of seven iterative phases including business analysis, requirements analysis,
COTS product identification, COTS product evaluation, decision making, COTS
customization, and COTS integration. The incremental and iterative aspects of
RecIProC allows it to support a “simultaneous definition and tradeoffs” among re-
quirements, architecture, and component marketplace and management aspects of
the project including cost and time estimation and risk management.

We have also developed CASE tools to support our methodology. Based on the
meta-model of COTS components, we have implemented a component management
system for managing components’ information so that they can be found and reused
effectively. Concerning the modeling tool, DesCARTES is a tool developed by our
research unit. It supports diagram edition of various models including i* models
(Strategic Dependency and Strategic Rationale models), NFR models, UML models,
and AUML models. We have extended DesCARTES to add the SSM modeling into
its i* editor and a business process modeling editor which is based on BPMN. We
have also developed a hierarchy graph editor to model goals to be fulfill by each
COTS component. This editor also allows users to generate a RFP, which follows
our RFP template, from a hierarchy graph. Finally, we have implemented a VBA
program in Ms Excel for analyzing the RFP answers from vendors.

The methodology proposed in this thesis focuses on system-level COTS com-
ponents. Such COTS components are far more expensive and have bigger organi-
zational impact than fine grained components, i.e. distributed component. Con-
sequently, the selection of system-level COTS components has to be properly con-
ducted at the analysis and design time while fine grained components can be selected
at runtime. In [162], we have proposed an approach for selecting COTS components
at runtime but this approach is intended to be used for fine grained COTS compo-
nents selection.

From the managerial and economical perspective, this thesis contributes to the
improvement of enterprise information system development. Specifically, it focuses
on CBSD seen by research and industry as an efficient, manageable and cost effective
development approach. This thesis proposes a business-driven methodology for the
development of IT solutions that satisfy business requirements. In this sense, the
proposed development process starts with business analysis phase that consists of
studying the business context in order to define the business problems to be solved or
the business opportunities to be addressed by the information system; defining the
scope of the project in order to identify the different systems that will be integrated
together to build the intended system; and analyzing strategic impacts in order to
study the long-term strategic impacts of adopting the software project. The result
of the business analysis phase serves as the basis for the following phases of the
development process.

173

CHAPTER 8. CONCLUSION

The development process has also drawn attention to the economic factor con-
cerning the use of COTS components. It states that using COTS components the
right solution when it fits the project context:

e Technically. It is able to offer the desired functionally at the required level
of reliability;

e Economically. It is able to be incorporated and maintained in the target
system within the available budget and schedule;

e Strategically. It meets the needs of the system environment including tech-
nical, political and legal consideration.

In addition, our methodology proposes a flexible integration system architecture
allowing IT systems to be easily adapted to the business changes.

8.2 Advantages of the Proposed Architectural Design

The advantages of the proposed architecture is extremely difficult to quantify. A
same case study should be performed using the proposed methodology, once with the
architectural pattern, once without. The result could then be evaluated on the basis
of development time, cost, the application performance on general and particular
aspects, etc. Such an experiment would nevertheless be polluted by external factors.

In this thesis, we aim to illustrate the advantages of the proposed architecture in
term of its qualitative aspects. Indeed, the proposed architecture was designed with
respect to a set of quality requirements that we have defined. We used the NFR
framework to conduct the quality analysis.

As depicted in Figure 8.1, Usability is the highest-level quality requirement that
the proposed architecture needs to fulfill. It is the ability of the proposed architecture
to be used by the application developers. It is refined into Compatibility, Learnability
and Modifiability.

The NFR Compatibility requires the proposed architecture to be able to work
with other systems. The operationalizing goal Use of standard technology has a suf-
ficient positive (++) contribution to fulfill this quality requirement. With respect
to this operationalizing goal, technologies used for the implementation of the pro-
posed architecture are all standard, e.g. Java, XML, Servlet, etc. The MAS is also
designed in accordance with the FIPA-specification.

The NFR Learnability requires the proposed architecture to be easy for develop-
ers to understand and to be able to use it. The operationalizing goals Use of standard
technology, Use of an implementation model, Description over multiple complemen-
tation dimensions and Social-based architecture contribute positively to fulfill this
requirement. These operationalizing goals are implemented in our proposal.

174

8.2. ADVANTAGES OF THE PROPOSED ARCHITECTURAL DESIGN

The NFR Modifiability requires the proposed architecture to be easy for devel-
opers to modify it. It is refined into Maintainability and Flexibility. Maintainability
is the ease with which a software system can be modified to correct faults, improve
performance or other attributes, or adapt to a changed environment. Flexibility is
the ease with which a system can be modified to adapt to the environment changes.
The operationalizing goals Use of wrapping architecture and Fase of customization
to business logic contributes to the fulfillment of these requirements.

With respect to the operationalizing goal Use of wrapping architecture, our pro-
posed architecture is a wrapper-based architecture. It is designed with respect to
the integration architecture constraints for easing component integration defined in
[157] that:

e all components are wrapped;
e components do not talk directly to each other;
e the MAS is independent of underlying components.

The operationalizing goal FEase of customization to business logic encompasses
Use of XML, Use of business rules, and Use of agent technology operationalizing
goals. These goals are all implemented in our proposal. More precisely, our integra-
tion architecture is an agent-oriented architecture. The XML files are used to store
the belief base and the service base of each agent. Logical rules, which implement
the business rules, are separated from the application code.

175

CHAPTER 8. CONCLUSION

D

Usability
Compatibility Learnabilityq Maodifiability

A TN
++ | +,7 +] NS St
o D oy
Useof Useolan pescription over Social-based Maintainability Flexibility
standard ~ Implementation - iipje architecture A X 7 A

technology model complementary +| o=y L
dimensions LT Ssol !
0o B e
Use of Ease of customization to
wrapping business logic
architecture
Use of XML Use of Use of agent
business rules technology
Legend:
++ + - - -

Do [l et e e

NFR Operationalizing AN Make Help Hurt Break

goal goal decomposition contribution contribution contribution contribution

Figure 8.1: Quality analysis of the proposed architectural design.
8.3 Future Work

This section introduces the future work, that can be done to improve the work done
in this thesis, as follows:

e Including the project management dimension into our methodology. We have
reviewed the state of the art on project management for CBSD (i.e. effort
estimation models, quality management, risk management, and organizational
change management). The relevant approaches found in the literature can be
integrated into our methodology in order to deal with the project management
issues;

e More case studies. The methodology needs to gain experience with its use.
It should be tested on more case studies, and eventually compared to other
methodologies. This would contribute to the refinement of the methodology;

e Dealing with system evolution. The methodology can be extended to cover the
system evolution phase of CBSD life cycle.

176

8.4. LIST OF PUBLICATIONS

8.4 List of Publications

International Journals

1. S. Kiv, Y. Wautelet, Manuel Kolp: “Agent-Driven Integration Architecture for
Component-Based Development”, Transactions on Computational Collective
Intelligence (8), 2012.

2. Y. Wautelet, S. Kiv, Manuel Kolp: “An Iterative Process for Component-
Based Software Development Centered on Agents”’, Transactions on Compu-
tational Collective Intelligence (4), 2011.

International Conferences

1. S. Kiv, Y. Wautelet, and M. Kolp, “A Multi-Agent Architectural Pattern for
Wrapping Off-the-Shelf Components”, in Proceeding of the 5th KES-AMSTA
International Conference, 2011.

2. S. Kiv, Y. Wautelet and M. Kolp, “A Process For COTS-Selection And Mis-
matches Handling: A Goal-Driven Approach”, in Proceedings of the 2nd In-
ternational Conference on Agent and Artificial Intelligence (ICAART), 2010.

3. Y. Wautelet, S. Kiv, V. Tran and M. Kolp, “Round Tripping in Component
Based Software Development”, in Proceeding of the 2010 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, 2010.

4. Y. Wautelet, S. Kiv, V. Tran and M. Kolp, “Strategic Reasoning in Software
Development”, in Proceeding of the 12th International Conference on Enter-
prise Information System, 2010.

5. Y. Wautelet, Y. Achbany, S. Kiv and M. Kolp, “A Service-Oriented Frame-
work for Component-Based Software Development, An i* Driven Approach”,
in Proceedings of the 11th International Conference on Enterprise Informa-

tion Systems (ICEIS09), Lecture Notes in Business Information Processing,
Springer, 24, pp 551-563, 2009.

6. Y. Wautelet, S. Kiv and M. Kolp, “A Methodology for COTS-based Software
Customization: an Agent-Oriented Approach”, accepted for poster presenta-

tion at the 4th International Conference on Software and Data Technologies
(ICSOFT09), 2009.

Book Chapters

1. M. Kolp, Y. Wautelet, S. Kiv and V. Tran, “Engineering Software Systems
with Social-Driven Templates” in Methodological Advancements in Intelligent

177

CHAPTER 8. CONCLUSION

Information Technologies: Evolutionary Trends, Advances in Intelligent Infor-
mation Technologies Series, Information Science Publishing, 2009.

Technical Report

1. M. Kolp, Y. Wautelet, S. Kiv and Y. Achbany, “A Unified Data Model for
FEuropean Schoolnet Databases”, Final Report, May 2009.

178

Bibliography

1]
2]

[3]

[9]

[10]

Microsoft office. http://www.office.microsoft.com/.

Sap erp. http://www.sap.com/solutions/bp/enterprise-resource-
planning/index.epx.

C. Abts, B.W. Boehm, and E.B. Clark. COCOTS: A COTS software inte-
gration lifecycle cost model-model overview and preliminary data collection
findings. In ESCOM-SCOPE Conference. Citeseer, 2000.

C. Albert, L. Brownsword, C.D. Bentley, T. Bono, E. Morris, et al. Evolution-
ary process for integrating COTS-based systems (EPIC): An overview. SEI
CMU, Pittsburgh, PA, Technical Report CMU/SEI-2002-TR-009, 2002.

A.J. Albrecht. Measuring application development productivity. In Proceed-
ings of the Joint SHARE/GUIDE/IBM Application Development Symposium,
pages 83-92, 1979.

E. Altendorf, M. Hohman, and R. Zabicki. Using j2ee on a large, web-based
project. IEEE Software,, pages 81-89, 2002.

C. Alves. Cots-based requirements engineering. Component-Based Software
Quality, pages 21-39, 2003.

C. Alves and J. Castro. CRE: A systematic method for COTS components
selection. In XV Brazilian Symposium on Software Engineering (SBES). Rio
de Janeiro, Brazil, 2001.

C. Alves and A. Finkelstein. Negotiating requirements for cots-based systems.
In proceedings of 8th Int. Workshop on Requirements Engineering: Foundation
for Software Quality, in conjunction with RE, volume 2. Citeseer.

C. Alves and A. Finkelstein. Investigating conflicts in cots decision-making.
International Journal of Software Engineering and Knowledge Engineering,
13(5):473-493, 2003.

179

BIBLIOGRAPHY

[11]

[17]

[18]

[19]

[20]

[21]

[22]

B. Anda, H. Dreiem, D. Sjgberg, and M. Jgrgensen. Estimating software
development effort based on use casesexperiences from industry. UML 2001 The
Unified Modeling Language. Modeling Languages, Concepts, and Tools, pages
487-502, 2001.

A L. Anton. Goal identification and refinement in the specification of software-
based information systems. PhD thesis, 1997.

B. Arinze and M. Anandarajan. A framework for using oo mapping methods
to rapidly configure erp systems. Communications of the ACM, 46(2):61-65,
2003.

J. Arlow and I. Neustadt. Uml and the unified process. The Object Technology
Series, 2002.

C. Ayala. Systematic construction of goal-oriented cots taxonomies. PhD
thesis, 2008.

C Ayala, Carlos Cares, Juan P Carvallo, Gemma Grau, Mariela Haya,
Guadalupe Salazar, Xavier Franch, Enric Mayol, and Carme Quer. A com-
parative analysis of i*-based agent-oriented modeling languages. In Proc. of
the Conf. on Software Engineering and Knowledge Engineering (SEKE’05),
Taipei, Taiwan, Republic of China, pages 43-50, 2005.

B. Balachandran. Developing intelligent agent applications with jade and jess.
In Knowledge-Based Intelligent Information and Engineering Systems, pages
236-244. Springer, 2008.

V.R. Basili and B. Boehm. COTS-based systems top 10 list. Computer,
34(5):91-95, 2001.

F. Bellifemine, A. Poggi, and G. Rimassa. Jade—a fipa-compliant agent frame-
work. In Proceedings of PAAM, volume 99, pages 97-108. Citeseer, 1999.

F.L. Bellifemine, G. Caire, and D. Greenwood. Developing multi-agent systems
with JADE, volume 5. Wiley, 2007.

A. Beneventi, A. Poggi, M. Tomaiuolo, and P. Turci. Integrating rule and
agent-based programming to realize complex systems. WSEAS Trans. on In-
formation Science and Applications, 1(1):422-427, 2004.

C. Bernon, V. Camps, M.P. Gleizes, and G. Picard. Tools for self-organizing

applications engineering. Engineering Self-Organising Systems, pages 283-298,
2004.

180

BIBLIOGRAPHY

23]

[24]

[25]

[26]

[27]

M. Bertoa and A. Vallecillo. Quality attributes for cots components. ID
Computacion, 1(2):128-144, 2002.

M.F. Bertoa, J.M. Troya, and A. Vallecillo. Measuring the usability of software
components. Journal of Systems and Software, 79(3):427-439, 2006.

B. Boehm. Requirements that handle ikiwisi, cots, and rapid change. Com-
puter, 33(7):99-102, 2000.

B. Boehm. Spiral development: Experience, principles and refinements, re-
port special report cmu. Technical report, SEI-2000-SR-008, Carnegie Mellon
Software Engineering Institute, 2000.

B. Boehm, D. Port, M. Abi-Antoun, and A. Egyed. Guidelines for the life cycle
objectives (lco) and the life cycle architecture (lca) deliverables for model-

based architecting and software engineering (mbase). USC, Los Angeles, USC
Technical Report USCCSE-98-519, 1999.

B. Boehm, D. Port, and Y. Yang. Winwin spiral approach to developing cots-
based applications. In EDSER-5 5 th International Workshop on Economic-
Driven Software Engineering Research, 2003.

B. Boehm, D. Port, Y. Yang, and J. Bhuta. Not all CBS are created equally:
COTS-intensive project types. COTS-Based Software Systems, pages 36—50,
2003.

B.W. Boehm. Software engineering economics. Prentice-Hall, 1981.

B.W. Boehm. A spiral model of software development and enhancement.
Computer, 21(5):61-72, 1988.

B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. MacLeod, and M.J.
Merrit. Characteristics of software quality. 1978.

B.W. Boehm, J.R. Brown, and M. Lipow. Quantitative evaluation of soft-
ware quality. In Proceedings of the 2nd international conference on Software
engineering, pages 592-605. IEEE Computer Society Press, 1976.

B.W. Boehm, R. Madachy, B. Steece, et al. Software Cost Estimation with
Cocomo II. Prentice Hall PTR, 2000.

G. Booch. Object-oriented analysis and design with applications. The Addison-
Wesley object technology series. Benjamin/Cummings Pub. Co., 1994.

A.W. Brown and K.C. Wallnau. The current state of CBSE. Software, IEFE,
15(5):37-46, 1998.

181

BIBLIOGRAPHY

[37]

[38]

[39]

[40]

[44]

[45]

[46]

L. Brownsword, T. Oberndorf, and C.A. Sledge. Developing new processes for
COTS-based systems. Software, IEEE, 17(4):48-55, 2000.

T. Budd. An introduction to object-oriented programming. Addison-Wesley
Reading, Massachusetts, 1991.

X. Burgués, C. Estay, X. Franch, J.A. Pastor, and C. Quer. Combined selection
of COTS components. COTS-Based Software Systems, pages 54—64, 2002.

P. Burrafato and M. Cossentino. Designing a multi-agent solution for a book-
store with the passi methodology. In Fourth International Bi-Conference
Workshop on Agent-Oriented Information Systems (AOIS-2002), pages 27—
28, 2002.

J. Cadle and D. Yeates. Project management for information systems. Prentice
Hall, 2004.

G. Caire, W. Coulier, F. Garijo, J. Gomez, J. Pavon, F. Leal, P. Chainho,
P. Kearney, J. Stark, R. Evans, et al. Agent oriented analysis using mes-
sage/uml. Agent-oriented software engineering II, pages 119-135, 2002.

Esther Cameron and Mike Green. Making Sense of Change Management: A
Complete Guide to the Models Tools and Techniques of Organizational Change.
Kogan Page, 2012.

L.F. Capretz. Y: a new component-based software life cycle model. Journal
of Computer Science, 1(1):76-82, 2005.

S.K. Card, T.P. Moran, and A. Newell. The psychology of human-computer
interaction. CRC, 1983.

D. Carney. Assembling large systems from COTS components: opportunities,
cautions, and complexities. SEI Monographs on Use of Commercial Software
in Government Systems, 1997.

D. Carney and F. Leng. What do you mean by COTS? Finally, a useful answer.
Software, IEEE, 17(2):83-86, 2000.

J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-driven informa-
tion systems engineering: the tropos project. Information systems, 27(6):365—
389, 2002.

L. Chung and K. Cooper. A cots-aware requirements engineering (care) pro-
cess: Defining system level agents, goals, and requirements. Department of
Computer Science, The University of Texas, Dallas, TR UTDCS-23-01, 2001.

182

BIBLIOGRAPHY

[50]

[56]

[57]

[58]

[60]

[61]

[62]

L. Chung and K. Cooper. A knowledge-based cots-aware requirements en-
gineering approach. In Proceedings of the 14th international conference on
Software engineering and knowledge engineering, pages 175-182. ACM, 2002.

L. Chung and K. Cooper. Defining goals in a cots-aware requirements engi-
neering approach. Systems engineering, 7(1):61-83, 2004.

L. Chung and K. Cooper. Matching, ranking, and selecting components: A
cots-aware requirements engineering and software architecting approach. In
Proceedings 1st MPEC Workshop, 2004.

L. Chung, BA Nixon, E. Yu, and J. Mylopoulos. Non-functional requirements
in software engineering. 2000, 2000.

S. Comella-Dorda, J. Dean, E. Morris, P. Oberndorf, et al. A process for cots
software product evaluation. In Proceedings of the 1st International Conference
on COTS-Based Software System, 2002.

A. Corradi, N. Dulay, R. Montanari, and C. Stefanelli. Policy-driven manage-
ment of agent systems. Policies for Distributed Systems and Networks, pages
214-229, 2001.

I. Crnkovic and M.P.H. Larsson. Building reliable component-based software
systems. Artech House Publishers, 2002.

A. Dardenne, A. Lamsweerde, and S. Fickas. Goal-directed requirements ac-
quisition. Science of computer programming, 20(1-2):3-50, 1993.

A. Davis. A comparative study of dcom and soap. In Multimedia Software

Engineering, 2002. Proceedings. Fourth International Symposium on, pages
48-55. IEEE, 2002.

S.A. DeLoach, M.F. Wood, and C.H. Sparkman. Multiagent systems engineer-
ing. International Journal of Software Engineering and Knowledge Engineer-
ing, 11(3):231-258, 2001.

T. T. Do. A framework for multi-agent systems detail design. PhD thesis, Uni-
versit catholique de Louvain, Institut d’Administration et de Gestion (IAG),
Belgium, 2005.

T.B. Downing. Java RMI: remote method invocation. IDG Books Worldwide,
Inc., 1998.

R.G. Dromey. A model for software product quality. Software Engineering,
IEEE Transactions on, 21(2):146-162, 1995.

183

BIBLIOGRAPHY

[63]

[64]

[65]

[69]
[70]

[71]

[74]

[75]

[76]

C.A. Ellis and J. Wainer. Goal-based models of collaboration. Collaborative
Computing, 1(1):61-86, 1994.

H. Estrada, A. Rebollar, O. Pastor, and J. Mylopoulos. An empirical evalu-
ation of the i* framework in a model-based software generation environment.
In Advanced Information Systems Engineering, pages 513-527. Springer, 2006.

Y. Fan, W. Shi, and C. Wu. Enterprise wide application integration platform
for cims implementation. Journal of intelligent Manufacturing, 10(6):587-601,
1999.

M. Fayad and D.C. Schmidt. Object-oriented application frameworks. Com-
munications of the ACM, 40(10):32-38, 1997.

M.E. Fayad, D.S. Hamu, and D. Brugali. Enterprise frameworks character-
istics, criteria, and challenges. Communications of the ACM, 43(10):39-46,
2000.

P. Felber and P. Narasimhan. Experiences, strategies, and challenges in build-
ing fault-tolerant corba systems. IFEE Transactions on Computers, pages
467-511, 2004.

FIPA. Agent uml. http://www.auml.org/, 2010.

K. Forsberg and H. Mooz. System engineering overview. Software Require-
ments Engineering, pages 44-72, 1997.

E. Friedman-Hill. Jess in action: rule-based systems in java. Manning publi-
cations, 2003.

R.B. Grady. Practical software metrics for project management and process
improvement. Prentice-Hall, Inc., 1992.

G. Grau, J.P. Carvallo, X. Franch, and C. Quer. Descots: a software system
for selecting cots components. In Furomicro Conference, 200/4. Proceedings.
30th, pages 118-126. IEEE, 2004.

S. Gregor, J. Hutson, and C. Oresky. Storyboard process to assist in require-
ments verification and adaptation to capabilities inherent in cots. COTS-Based
Software Systems, pages 132-141, 2002.

Object Management Group. Business process modeling notation bpmn v2.0.
Awailable at hitp://www.omg.org/spec/BPMN/2.0/.

H.T.T. Hang. Quality-aware agent-oriented information-system development.
PhD thesis, 2010.

184

BIBLIOGRAPHY

[77]

B. Henderson-Sellers. From object-oriented to agent-oriented software engi-
neering methodologies. Software Engineering for Multi-Agent Systems III,
pages 1-18, 2005.

P. Herzum and O. Sims. Business Components Factory: A Comprehensive
Overview of Component-Based Development for the Enterprise. John Wiley
& Somns, Inc. New York, NY, USA, 2000.

i* Wiki. Available i* tools. Awailable at http://istar.rwth-aachen.de/tiki-
index. php ?page=Comparing+the+i*+Tools.

i* Wiki. Comparing the i* tools. Available at http://istar.rwth-aachen.de/tiki-
index.php ?page=i*+ Toolsé9structure=i*+ Wiki+Home.

ISO. ISO/IEC IS 9126: Software Product Evaluation - Quality Characteristics
and Guidelines for their Use. 1991.

ISO. Iso/iec 9126: Software engineering-product quality-part 1: Quality
model. International Organization for Standardization, Geneva, Switzerland,
2001.

ISO/IEC. Software engineering — software product quality requirements and
evaluation (square)— guide to square. International Organization for Stan-
dardization, 2005.

I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development
process. Addison-Wesley Longman, 1999.

1. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-oriented
software engineering: a use case driven approach. Addison-Wesley, 1992.

N. Jennings. Agent-oriented software engineering. Multi-Agent System Engi-
neering, pages 1-7, 1999.

N.R. Jennings and M.J. Wooldridge. Agent technology: foundations, applica-
tions, and markets. Springer Verlag, 1998.

S. Joosten and S. Purao. A rigorous approach for mapping workflows to object-
oriented is models. Journal of Database Management (JDM), 13(4):1-19, 2002.

S Kalaimagal and R Srinivasan. Q’facto 10-a commercial off-the-shelf compo-
nent quality model proposal’. J. Software Eng, 4:1-15, 2010.

Sivamuni Kalaimagal and Rengaramanujam Srinivasan. Q’facto 12: an im-
proved quality model for cots components. SIGSOFT Softw. Eng. Notes,
35(2):1-4, 2010.

185

BIBLIOGRAPHY

[91]

[92]

[93]

[101]

[102]

K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, DTIC Doc-
ument, 1990.

E. Kavakli and P. Loucopoulos. Goal driven requirements engineering: Eval-
uation of current methods. In Proceedings of the 8th CAiSE/IFIPS8, 2003.

V. Kavakli and P. Loucopoulos. Goal-driven business process analysis applica-
tion in electricity deregulation. In Advanced Information Systems Engineering,
page 305. Springer, 1998.

SD Kim and JD Park. C-gm: A practical quality model for evaluting cots
components. In Applied Informatics, pages 991-996. IASTED/ACTA Press,
2003.

R. Kishore, H. Zhang, and R. Ramesh. Enterprise integration using the agent
paradigm: foundations of multi-agent-based integrative business information
systems. Decision Support Systems, 42(1):48-78, 2006.

M. Kolp, S. Faulkner, and Y. Wautelet. Social structure based design patterns
for agent-oriented software engineering. IJIIT, 4(2):1-23, 2008.

M. Kolp, P. Giorgini, and J. Mylopoulos. Multi-agent architectures as organi-
zational structures. Autonomous Agents and Multi-Agent Systems, 13(1):3-25,
2006.

J. Kontio. OTSO: a systematic process for reusable software component se-
lection. 1995.

J. Kontio. A case study in applying a systematic method for COTS selection.
In Proceedings of the 18th international conference on Software engineering,
pages 201-209. IEEE Computer Society, 1996.

J. Kontio, G. Caldiera, and V.R. Basili. Defining factors, goals and criteria for
reusable component evaluation. In Proceedings of the 1996 conference of the
Centre for Advanced Studies on Collaborative research, page 21. IBM Press,
1996.

G. Kotonya and A. Rashid. A strategy for managing risk in component-
based software development. In Euromicro Conference, 2001. Proceedings.
27th, pages 12-21. IEEE, 2001.

P. Kruchten. The rational unified process : An introduction. Longman (Wok-
ingham), Addison-Wesley, December, 2003.

186

BIBLIOGRAPHY

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

P. Kruchten. The rational unified process: an introduction. Addison-Wesley
Professional, 2004.

T.S. Kuhn. The structure of scientific revolutions, volume 2. University of
Chicago press, 1996.

D. Kunda and L. Brooks. Applying social-technical approach for cots selection.
In Proceedings of the 4th UKAIS Conference, pages 552-565. Citeseer, 1999.

D. Kunda and L. Brooks. Identifying and classifying processes (traditional and
soft factors) that support cots component selection: a case study. Furopean
Journal of Information Systems, 9(4):226-234, 2000.

Y. Labrou, T. Finin, and Y. Peng. Agent communication languages: The
current landscape. Intelligent Systems and their Applications, IEEE, 14(2):45—
52, 1999.

I. Lakatos. The Methodology of Scientific Research Programmes: Philosophical
Papers: Vol.: 1. Cambridge University Press, 1978.

R.W. Lichota, R.L. Vesprini, and B. Swanson. Prism product examination
process for component based development. In Assessment of Software Tools
and Technologies, 1997., Proceedings Fifth International Symposium on, pages
61-69. IEEE, 1997.

N.A. Maiden and C. Ncube. Acquiring cots software selection requirements.
Software, IEEE, 15(2):46-56, 1998.

A. Marco and J. Buxton. The craft of software engineering. Addison-Wesley
Longman Publishing Co., Inc., 1986.

J.A. McCall, P.K. Richards, G.F. Walters, Rome Air Development Center,
and United States. Air Force. Systems Command. Electronic Systems Division.
Factors in software quality. Rome Air Development Center, Air Force Systems
Command, 1977.

J. McDermid and P. Rook. Software development process models. Software
engineer’s reference book, pages 1-35, 1991.

J. McManus and T. Wood-Harper. Information systems project management:
Methods, tools and techniques. Pearson Education, 2003.

B.C. Meyers and P. Oberndorf. Managing software acquisition: open systems
and COTS products. 2001.

187

BIBLIOGRAPHY

[116]

[117)

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

A. Mohamed, G. Ruhe, and A. Eberlein. COTS selection: past, present, and
future. 2007.

A. Mohamed, G. Ruhe, and A. Eberlein. Decision support for handling mis-
matches between COTS products and system requirements. 2007.

A.S.A.S. Mohamed. Decision support for selecting COTS software products
based on comprehensive mismatch handling. PhD thesis, 2007.

E.F. Monk and B.J. Wagner. Concepts in enterprise resource planning. Course
Technology, 2006.

M. Morisio, C.B. Seaman, A.T. Parra, V.R. Basili, S.E. Kraft, and S.E. Con-
don. Investigating and improving a COTS-based software development pro-
cess. 2000.

M. Morisio and M. Torchiano. Definition and classification of COTS: a pro-
posal. COTS-Based Software Systems, pages 165175, 2002.

M. Morisio and A. Tsoukias. Iusware: A methodology for the evaluation
and selection of software products. In Software Engineering. IEE Proceedings,
volume 144, pages 162-174. IET, 1997.

L.F. Motiwalla and J. Thompson. Enterprise systems for management. Pear-
son Prentice Hall, 2009.

H. Mouratidis. A security oriented approach in the development of multiagent
systems: applied to the management of the health and social care needs of older
people in England. PhD thesis, University of Sheffield, 2004.

P. Naur and B. Randell. Software engineering: Report of a conference spon-
sored by the nato science committee. NATO, 1968.

C. Ncube and J. Dean. The limitations of current decision-making techniques
in the procurement of COTS software components. COTS-Based Software
Systems, pages 176-187, 2002.

C. Ncube and N.A.M. Maiden. PORE: Procurement-oriented requirements en-
gineering method for the component-based systems engineering development
paradigm. In International Workshop on Component-Based Software Engi-
neering, page 1. Citeseer, 1999.

M. Northover, D. G. Kourie, A. Boake, S. Gruner, and A. Northover. Towards
a philosophy of software development: 40 years after the birth of software
engineering. In Zeitschrift fr allgemeine Wissenschaftstheorie, 39(1).

188

BIBLIOGRAPHY

[129]

[130]

[131]

[132]

[133]
[134]

[135]

[136]

[137]

[138]

[139]

[140]
[141]

[142]

[143]

[144]

P.A. Oberndorf. Workshop on cots-based systems. Technical report, Carnegie
Mellon University, 1997.

M. Ochs, D. Pfahl, G. Chrobok-Diening, and B. Nothhelfer-Kolb. A cots
acquisition process: Definition and application experience. ISERN Report,
2000.

OMG. The software process engineering metamodel specification. version 1.1.
2005.

J. Pavén and J. Gémez-Sanz. Agent oriented software engineering with inge-
nias. Multi-Agent Systems and Applications 111, pages 1069-1069, 2003.

S.L. Pfleeger. Software engineering: theory and practice. Prentice-Hall, 2001.

S.L. Pfleeger and J.M. Atlee. Software engineering: theory and practice. Pren-
tice Hall, 1998.

PMI. A Guide to the Project Management Body of Knowledge (PMBOK
guide). Project Management Institute, 2004.

A. Poggi, G. Rimassa, and P. Turci. What agent middleware can (and should)
do for you. Applied Artificial Intelligence, 16, 9(10):677-698, 2002.

L.H. Putnam. A general empirical solution to the macro software sizing and
estimating problem. Software Engineering, IEEE Transactions on, (4):345—
361, 1978.

A. Rashid and G. Kotonya. Risk management in component-based develop-
ment: A separation of concerns perspective. In FCOOP Workshop on Ad-
vanced Separation of Concerns (ECOOP Workshop Reader). Citeseer, 2001.

A. Rawashdeh and B. Matalkah. A new software quality model for evaluating
cots components. Journal of Computer Science, 2(4):373-381, 2006.

P. Rogers. Software engineering: a practitioner’s approach, 1991.

L. Rose. Risk management of COTS based systems development. Component-
Based Software Quality, pages 352-373, 2003.

W. Royce. Software project management: a unified framework. The Addison-
Wesley object technology series. Addison-Wesley, 1998.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
oriented modeling and design, volume 38. Prentice hall, 1991.

T.L. Saaty. Analytic hierarchy process. 1980.

189

BIBLIOGRAPHY

[145]

[146]
[147]
[148]
[149]
[150]
[151]
[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

R. Simao and A. Belchior. Quality characteristics for software components:
Hierarchy and quality guides. Component-Based Software Quality, pages 184—
206, 2003.

BeanShell Web Site. http://www.beanshell.org/.

DesCARTES Web Site. http://www.isys.ucl.ac.be/descartes/.
Drools Web Site. http://www.jboss.org/drools.

FIPA Web Site. http://fipa.org.

JADE Web Site. http://jade.tilab.com/.

UML Web Site. http://www.uml.org/.

I. Sommerville. Software Engineering. Addison-Wesley USA, 2005.

M. Torchiano and M. Morisio. Overlooked aspects of COTS-based develop-
ment. Software, IEEE, 21(2):88-93, 2004.

V. Tran and D.B. Liu. A procurement-centric model for engineering
component-based software systems. In Assessment of Software Tools and Tech-
nologies, 1997., Proceedings Fifth International Symposium on, pages 70-79.
IEEE, 1997.

A. Van Lamsweerde. Goal-oriented requirements engineering: A guided tour.
re, page 0249, 2001.

R. Vieira, A. Moreira, M. Wooldridge, and R.H. Bordini. On the formal se-
mantics of speech-act based communication in an agent-oriented programming
language. Journal of Artificial Intelligence Research, 29(1):221-267, 2007.

M.R. Vigder and J. Dean. An architectural approach to building systems
from COTS software components. In Proceedings of the 1997 conference of the
Centre for Advanced Studies on Collaborative research, page 22. IBM Press,
1997.

G. Wagner. Agent-object-relationship modeling. In Proceedings of the 2nd
International Symposium: From Agent Theory to Agent Implementation, 2000.

Y. Wautelet. A goal-driven project management framework for multi-agent
software development: The case of i-tropos. PhD thesis, Universit catholique
de Louvain, Louvain School of Management (LSM), Louvain-La-Neuve, Bel-
gium, August, 2008.

190

BIBLIOGRAPHY

[160]

[161]

[162]

163]

[164]

[165]

[166]

[167]

[168]

[169)]

[170]

[171]
[172]

[173]

Y. Wautelet. Representing, modeling and engineering a collaborative supply
chain management platform. IJISSCM, 5(3):1-23, 2012.

Y. Wautelet, Y. Achbany, and M. Kolp. A service-oriented framework for mas
modeling. In Proceedings of the 10th International Conference on Entreprise
Information Systems (ICEIS), Bacelona, 2008.

Y. Wautelet, S. Kiv, and M. Kolp. An iterative process for component-based
software development centered on agents. T. Computational Collective Intel-
ligence, 5:41-65, 2011.

Y. Wautelet and M. Kolp. Goal driven iterative software project management.
In ICSOFT (2), pages 44-53, 2011.

Y. Wautelet, M. Kolp, and S. Poelmans. Requirements-driven iterative
project planning. In Marfa José Escalona Cuaresma, José Cordeiro, and Boris
Shishkov, editors, Software and Data Technologies, volume 303 of Communi-
cations in Computer and Information Science, pages 121-135. Springer, 2013.

Y. Wautelet, C. Schinckus, and M. Kolp. A modern epistemological reading
of agent orientation. IJIIT, 4(3):46-57, 2008.

Y. Wautelet, C. Schinckus, and M. Kolp. Towards knowledge evolution in
software engineering: An epistemological approach. IJITSA, 3(1):21-40, 2010.

M. Wooldridge. Agent-based software engineering. In Software Engineering.
IEE Proceedings, volume 144, pages 26-37. IET, 1997.

M. Wooldridge, N.R. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems,
3(3):285-312, 2000.

D. Xu, J. Yin, Y. Deng, and J. Ding. A formal architectural model for logical
agent mobility. IEEE Transactions on Software Engineering, pages 31-45,
2003.

E. Yu. Modeling strategic relationships for process reengineering. PhD thesis,
University of Toronto, Department of Computer Science, Canada, 1995.

E. Yu. Social Modeling for Requirements Engineering. MIT Press, 2011.

E. Yu and J. Mylopoulos. Why goal-oriented requirements engineering. In
Proceedings of the 4th International Workshop on Requirements Engineering:
Foundations of Software Quality, pages 15-22, 1998.

Robert W Zmud. Management of large software development efforts. MIS
Quarterly, pages 45-55, 1980.

191

BIBLIOGRAPHY

192

Appendix A

Epistemological Foundation

This appendix presents an epistemological analysis of the emergence of CBSD. More
precisely, we argue that Lakatos’ “research programme” is more suitable than Kuhn’s
“paradigm shift” to explain this emergence.

A.1 Changes in Software Development Methodology

In the early years of computing, there was no clear notion of software development
methodology. Software was developed in a rather ad-hoc fashion, based on the avail-
able computer technology. As software projects grew in size project managers with
classical engineering backgrounds adopted their traditional style of management in
order to control challenging extent of system complexity wherein a project is viewed
as a sequence of discrete phases, each of which needed to be articulated, docu-
mented, executed and approved before proceeding the next phase. Therefore, once
the requirements had been elicited, documented and approved by the client, an anal-
ysis phase began. The analysis phase involved defining various modules of software
that could be written by different developers. This phase was followed by further
software project phases including design, implementation, testing, deployment, and
maintenance. This phased approach was called the waterfall methodology and it
symbolized a change from informally to formally and rigorously managed software
development project. Such a change clearly involved an important conceptual shift,
and in this sense, the adoption of the waterfall methodology could be seen as “rev-
olutionary”. However, since there were relatively few large projects in the emerging
software industry at that time, the uptake in applying the waterfall methodology
was gradual [128].

Nevertheless, this type of methodology can only be successful when a series
of assumptions are met at the same time. Otherwise, risks are introduced in the
development process. Following [26], these assumptions are:

193

APPENDIX A. EPISTEMOLOGICAL FOUNDATION

The requirements can be known in advance of implementation;

The requirements have no unresolved high-risk implication, such as risks due to
cots, schedule, performance, safety, security, user interface, and organizational
impacts;

The nature of the requirements will not change very much either during de-
velopment or evolution;

The requirements are compatible with all the key system stakeholders’ expec-
tations, including users, customers, developer, maintainers, investors;

The right architecture for implementing the requirements is well understood;

There is enough calendar time to proceed sequentially.

If these assumptions are not met, the initial design will possibly be flawed
with respect to its key requirements and late discovery of design defects results
in costly overruns and/or project abandonment. Consequently, time and money will
be wasted on specifying and implementing requirements that are going to change and
implementing a faulty design. By the late of 1980s, the inappropriate nature of this
type of methodology had become increasingly apparent because of the large num-
ber of unsuccessful software project because the assumptions needed for an optimal
waterfall methodology are rarely met due to:

Requirement can rarely be known and defined in advance of implementation,
especially for new user-interactive systems. Users and stakeholders are often,
during the early stages of the project, unable to express and describe the
system’s requirements. Most of them suffer from what Boehm calls IKIWISI
syndrome [25]. It is when they are asked about the system requirements they
reply “I can’t tell you, but I’ll know it when I see it (IKIWISI)”;

Defining requirements and freezing them early in the project is very risky.
Early defined requirements can meet users’ needs but sometimes analysts dis-
cover later in the project that their practical achievement is too constraining
(in terms of cost, development time, processing time, human resources, etc.).
Thus, it is important not to fix requirements too early in the project but
to keep the ability to refine them later if their definition appears to be too
constraining;

Requirements often evolve during the development process. Stakeholders ex-
press new ideas, needs or perspectives and consequently the requirements elic-
itation process cannot be done only once in the early stage but must be a

194

A.2. KUHN’S “PARADIGM SHIFT”

continuous process. In this way, we can avoid spending a huge time on re-
quirements analysis at the beginning of the project specifying requirements
that will tend to be out of date or be refined later in the project.

These remarks highlight the need for a new type of methodology that includes
continuous requirements acquisition and modeling. As a result, there was a strong
shift to “Iterative Incremental Development” which later evolved into a spiral model
of software development [31].

By contrast with the waterfall methodology, the iterative incremental develop-
ment assumes that it is improbable to produce a correct system without the repeti-
tion of cycles and the close interaction of users and developers contributing to the
creation of an evolving system. However, some people found even modernized con-
cepts of software development processes supporting the development from scratch to
be unable to cope with the challenges of the current enterprise information systems
which have become more and more large scale and complex. The development from
scratch of such systems has become extremely expensive and time-consuming.

In order to gain competitive advantages software organizations are forced to
develop systems quickly and cost-efficiently. Many organizations shift from tra-
ditional system development in which user requirements are specified and custom
solutions are developed, to a market-generated, product-based approach in which
users themselves select and arrange meaningful-to-them components as solutions to
their requirements. This new approach assumes that a knowledgeable project team
comprehends its own requirements, is able to obtain the required components for
building systems, and is competent enough to assemble these components into useful
and desired systems. This COTS-based system development approach seems to be a
promising solution to reduce development cost and effort, while maintaining overall
software products quality.)

COTS-based system development has several characteristics that distinguish it
from the traditional system development in which software systems are built from
scratch. On the epistemological perspective, the CBSD constitutes a knowledge
evolution in software engineering. In the thesis, we argue that Lakatos’ “research
programme” is more suitable than Kuhn’s “paradigm shift” to explain this evolution.
Before developing our argumentation, we present in this section the concepts of these
two epistemological approaches.

A.2 Kuhn’s “paradigm shift”

Kuhn is an epistemologist and historian of science who is most known for his book
The Structure of Scientific Revolutions [104] in which he presented the idea that sci-
ence does not progress via a linear accumulation of new knowledge, but undergoes
periodic revolutions, also called paradigm shift. According to Kuhn, a scientific rev-

195

APPENDIX A. EPISTEMOLOGICAL FOUNDATION

olution or paradigm shift occurs when scientists encounter anomalies which cannot
be explained by the current principal paradigm. For Kuhn, a paradigm is “A con-
stellation of concepts, values, perceptions and practices shared by a community and
which forms a particular vision of reality that is the basis of the way a community
organizes itself”.

Kuhn’s analysis of the history of science suggests to him that the practice of
science comes in three phases. The first phase is the pre-scientific phase, in which
there is no consensus on any theory of explanation because multiple paradigms are
put forward by different schools of thought. This phase is generally characterized
by several incompatible and incomplete theories and scientists may disagree with
one another as they propose and support their individual theories. Over time, as
the ideas compete, scientists cluster around a small set of paradigms, each trying to
support their own ideas and destroy the opposing paradigms. Finally, one paradigm
wins through and becomes the dominant principle. This comes to the normal science
phase in which scholars accept the dominant paradigm of the moment, performing
experiments that test and prove its efficacy in a range of situations. New explana-
tions may extends the paradigm but do not change its fundamental nature so that
the paradigm may grow with many extensions to explain the various exception cases
that are not easily covered by the original paradigm. During normal science, scien-
tists do not attempt to refute the paradigm. They resist anomalies until so many
have accumulated that they can no longer be ignored and the scientific community is
thrown into a state of crisis. During this crisis, new ideas are proposed and proven.
Eventually a new paradigm is formed and replaces the current dominant paradigm.
This is what Kuhn calls a paradigm shift.

For Kuhn, paradigm shift is revolutionary since the rules of the game have
changed. It is a complete change of world-view and is holistic rather than piece-
meal. In this sense, the new paradigm is incommensurable with the old one. Kuhn
states that all scientific fields go through these paradigm shifts multiple times, since
new theories displace the old, however, no scientific community will abandon the
dominant paradigm unless a new one becomes available.

Applying Kuhnian perspective to software engineering ingenuously, we could
consider COTS-based system development to be a new paradigm of software en-
gineering, whereas “waterfall” or other software engineering methodologies for the
traditional system development in which software systems are built from scratch
would be considered part of the old paradigm. The emergence of COTS-based sys-
tem development could be seen as a paradigm shift.

In the following, we will demonstrate that Kuhn’s concept of paradigm shift
does not adequately account for the change in software development methodology
toward COTS-based system development. After presenting the research program
concept developed by Lakatos, we will explain why Lakatosian perspective is more
appropriate to describe the evolution to COTS-based system development.

196

A.3. LAKATOS’ “RESEARCH PROGRAMME”

A.3 Lakatos’ “research programme”

Lakatos replaced the Kuhnian paradigm with an entity called a “research pro-
gramme” which involves a succession of theories [108]. A Lakatosian research pro-
gramme is a kind of scientific construction, a theoretical framework, which guides
future research in a specific field in a positive or negative way. Each research pro-
gramme is constituted of a hard core, a protective belt of auxiliary hypotheses, and
a positive and a negative heuristic.

The theories are linked by a common “hard core” of shared commitments. Each
theory in the sequence constitutes a new and more detailed articulation of these
commitments. The hard core is surrounded with a protective belt composed of
auxiliary hypotheses which shelters the hard core from immediate empirical refu-
tation. These auxiliary hypotheses will be thoroughly studied again, widened and
completed by successive theories in the program, but the core assumptions remain
intact. This widening of these hypotheses contributes to the evolution of the re-
search programme without modifying the core assumptions. According to Lakatos,
the evolution of knowledge can be characterized by a series of problems shifts which
allow the scientific theories to evolve without rejecting the basic axioms.

The third important of characteristic of a research programme is its ability to
stimulate the development of more complex and adequate theories. This capacity
for development, which Lakatos called the “heuristic”, is taken as an objective fea-
ture of the program. Lakatos distinguished between positive and negative heuristic.
The positive heuristic represents the agreement among the theoreticians over the
scientific evolution of the research programme. It is a kind of “problem solving
machinery” composed by proposals and indications on the way to widen and en-
rich the research programme. The negative heuristic is the opposite of the positive.
Within each research programme, it is important to maintain the core assumptions
intact. It means that all the questions or methodologies that are not in accordance
with the core assumptions must be rejected. All doubts appearing about the shared
commitments of the main theoretical framework become a kind of negative heuristic
of the research programme. When the negative heuristic considerable progresses, a
research programme can become degenerative (i.e. it has more and more empirical
anomalies).This means that theoreticians have to reconsider the core assumptions
of the research programme, which can lead to the creation of another research pro-
gramme. Kuhnian scientific revolutions are characterized by Lakatos as the defeat
of one research programme by another.

At first glance, the concept of Lakatosian research programme seems to be close
to the concept of Kuhnian paradigm. A research programme roughly corresponds
to a paradigm, and a program change approximately resembles to a paradigm shift.
The retention of the hard core and the positive heuristic in pursing a program
reproduce the continuity of normal science.

197

APPENDIX A. EPISTEMOLOGICAL FOUNDATION

Indeed, these two concepts are different. For Kuhn, the evolution of science
could be represented by a broken line where discontinuity would mark the passage
from one paradigm to another. In this sense, a particular science could contain only
one paradigm at a given time and the new paradigm is incommensurable with the
old one. In contract to the Kuhnian vision, Lakatos assumed that the simultaneous
existence of several research programmes is the norm. Moreover, rival programs may
contribute elements to each other, and degenerating programs are sometimes revived.
In this vision, there is no discontinuity between the different research programmes
and they are comparable to each other.

More precisely, Lakatos decompose the evolution of science into successive method-
ological and epistemological steps. These steps form a kind of vertical structure built
with a multitude of “layer of knowledge” and where each layer represents a partic-
ular research programme. The emergence of a new research programme is induced
by an empirical degeneration of a previously dominating research programme. The
new research programme will constitute a superior layer of knowledge.

In the following section, we present the argumentations for the use of the Lakatosian
research programme to explain the emergence of COTS-based system development.

A.4 CBSD: Paradigm Shift vs Research Programme

[165, 166] have presented a modern epistemological reading of software engineering
as an evolving science. These articles have advocated the use of the Lakatosian
research programme concept as an epistemological basis for the knowledge evolution
in software engineering. Following [165, 166], we will argue thoroughly that it is not
appropriate to see the emergence of COTS-based system development as a Kuhnian
paradigm shift.

First, by adoption this vision, we would consider that the CBSD will completely
replace the methodologies of the old paradigm. In reality, in most software projects,
the custom and COTS-based system developments are used jointly because it is
rarely to find the software components available in the market that meet all the
system requirements. The required functionalities that are specific to each project
will need to be developed in-house. In a Lakatosian vision, this cohabitation rep-
resents a progressive evolution of knowledge in software engineering. Indeed, the
Lakatosian epistemology implies that the transition between research programmes
is not clear and depends on the specific aspects of the experiment conducted (the
software project is the experiment in our case). In this sense, the Kuhnian disconti-
nuity between paradigms is not appropriate to explain the emergence of CBSD and
custom system development.

Another drawback of the adoption of the Kuhnian paradigm shift is the in-
commensurability between paradigms in the sense that scientists within different
paradigms are unable to understand each other. As evoked earlier, some activities

198

A.5. CONCLUSION

involved in building COTS-based systems are similar to those of custom system de-
velopment such as requirements engineering, system architecture design, and testing.
Based on numerous articles in the software literature, the methodologies employed
to undertake these activities in the custom system development have been adapted
to suit the changes brought by the use of COTS components. For instant, the goal-
driven requirements engineering have been used in both custom and COTS-based
system developments but the requirements defined in CBSD are more flexible and
abstract than the requirements defined in custom system development. In other
words, the methodologies used in CBSD are evolved from existing methodologies.
Therefore, the methodologies of custom and COTS-based system developments are
comparable. On the other hand, if we adopt the Lakatosian research programme
wherein each research programme constitutes a higher level of knowledge and raises
the abstraction level, CBSD can be seen as an evolution of the system development
from scratch and as a new research programme because it raises that level higher.
Moreover, the old and new research programmes are comparable which means that
the custom and COTS-based system developments are commensurable.

Based on these arguments, we could see that the emergence of CBSD can not
be described as a revolution or paradigm shift, in the Kuhnian sense but rather
as a Lakatosian new research programme. CBSD is based on the basic knowledge
that existed before its emergence. We could say that it has a hard core composed
of the common activities that need to be done when acquiring a system including
requirements engineering, system architecture design, and testing. Its protective belt
could be characterized by the use of existing software components that bring new
activities and changes to the new activities specific to the CBSD including selecting
COTS components and developing glueware.

A.5 Conclusion

The use of COTS components in software developments bring a lot of changes to the
traditional software development approach wherein every software components are
built from scratch. We have adopted Lakatos’ “research programme” rather than the
Kuhn’s “paradigm shift” for the emergence of CBSD. In other words, CBSD should
be envisaged as a natural evolution rather than as a complete revolution. This
adoption implies that our methodology is defined on the basis of existing methods
and techniques for custom system development.

199

APPENDIX A. EPISTEMOLOGICAL FOUNDATION

200

DO = = = = e e e
QSO U R WNRFROOOTID U W -

DD NN N
Ul W~

W NN NN
[esBNeNOGIEN NN

wW w
N =

Appendix B

MAS Implementation with
JADE: Source codes

B.1 MAS

B.1.1 Gateway Agent

package MAS;

import java.io.lOException;
import java.util.Hashtable;

import jade.core.AlID;

import jade.core.Agent;

import jade.core.behaviours.Behaviour;

import jade.core.behaviours.FSMBehaviour;
import jade.core.behaviours.OneShotBehaviour;
import jade.lang.acl.ACLMessage;

import jade.lang.acl.MessageTemplate;

import jade.lang.acl.UnreadableException;
import jade.wrapper.gateway.GatewayAgent;

public class Gateway extends GatewayAgent {

private static final String STATEA = "A";
private static final String STATEB = "B";
private static final String STATEC = "C";
private static final String STATED = "D";

private Request req;
private ACLMessage msg;
private MessageTemplate mt;

@Override
protected void processCommand (Object obj) {

// Creating a FMS behavior for handling the user request
FSMBehaviour fsm = new FSMBehaviour(this);

201

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

// Registering state A (first state)
fsm.registerFirstState (new GetUserRequest(this, obj), STATEA);

// Registering state B
fsm.registerState (new SendUserRequest(this), STATEB);

// Registering state C
fsm.registerState (new GetUserRequestResult(this), STATEC);

// Registering state C (last state)
fsm.registerLastState (new SendUserRequestResult(this, obj), STATED);

// Registering the transitions

fsm.registerTransition (STATEA, STATEB, 1);

//Getting to the final state if the request is unknown
fsm.registerTransition (STATE A, STATED, 0);
fsm.registerDefaultTransition (STATEB, STATEC);
fsm.registerDefaultTransition (STATE.C, STATED);

// Adding the FSM to the Gateway agent
addBehaviour (fsm);

}

private class GetUserRequest extends OneShotBehaviour {

Object obj;
int exitValue;

public GetUserRequest (Agent agent, Object obj) {
super (agent);
this.obj = obj;

}

public void action () {
if (obj instanceof Request) {

req = (Request) obj;

exitValue = 1;
} else {
exitValue = 0;
}
}
@Override

public int onEnd() {

return exitValue;

Y// End of inner class
private class SendUserRequest extends OneShotBehaviour {

public SendUserRequest (Agent agent) {
super (agent);

202

B.1. MAS

93

94 public void action () {

95 msg = new ACLMessage (ACLMessage .REQUEST);

96 msg.addReceiver (new AID("Mediator", AID.ISLOCALNAME));
97 try {

98 msg.setContentObject (req);

99 } catch (IOException e) {

100

101 e.printStackTrace ();

102

103 msg . setReplyWith ("request" 4+ System.currentTimeMillis ());
104 send (msg);

105 |}

106

107 | }// End of inner class

108

109 private class GetUserRequestResult extends Behaviour {
110 boolean done = false;

111

112 public GetUserRequestResult (Agent agent) {
113 super (agent);

114

115

116 public void action () {

117 mt = MessageTemplate.and (

118 MessageTemplate. MatchSender (new AID("Mediator", AID.ISLOCALNAME)),
119 MessageTemplate. MatchInReplyTo (msg. getReplyWith ()));
120 ACLMessage reply = receive (mt);

121 if (reply != null) {

122 try {

123 req.setResult ((Hashtable) reply.getContentObject ());
124 System.out.println (req.getResult ());

125 } catch (UnreadableException e)

126

127 e.printStackTrace ();

128 }

129 done = true;

130

131 } else {

132 block ();

133 }

134

135 |}

136

137 public boolean done() {

138

139 return done;

140 |}

141 | }// End of inner class

142

143 private class SendUserRequestResult extends OneShotBehaviour {
144
145 Object obj;

146

147 public SendUserRequestResult (Agent agent, Object obj) {
148 super (agent);

149 this.obj = obj;

150

151

152 @Override

203

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

153 public void action () {
154
155 releaseCommand (obj);
156
157 |}
158
159 | }
160
161 |}

Code extract B.1: Extract code of the Gateway agent.

B.1.2 Mediator Agent

package MAS;

import jade.core.Agent;

import java.io.FileNotFoundException;
import java.io.lOException;

import java.util.Hashtable;

import jade.core.behaviours.Behaviour;

import jade.core.behaviours.FSMBehaviour;

import jade.core.behaviours.OneShotBehaviour;

import jade.domain.DFService;

import jade.domain.FIPAException;

import jade.domain.FIPAAgentManagement. DFAgentDescription;
import jade.domain.FIPAAgentManagement. ServiceDescription;
import jade.lang.acl.ACLMessage;

import jade.lang.acl.MessageTemplate;

import jade.lang.acl.UnreadableException;

import MAS. Request ;

import bsh.EvalError;

import bsh.Interpreter;

DD = = = = e e e
COXTDANUEREWNHFROOOTID U W —

21

22 | public class Mediator extends Agent {

23 private static final String STATEA = "A";
24 private static final String STATEB = "B";
25 private static final String STATEC = "C";
26 private static final String STATED = "D";
27

28 private Request req;

29 private ACLMessage msgRequest, reply;

30 private MessageTemplate mt; // The template to receive replies
31 | DFAgentDescription[] serviceProviders;

32 private String beanShellFileName;

33 private String userRequestFileName;

34

35 | protected void setup () {

36

37 Object [] args = getArguments();

38 if (args != null && args.length > 1) {
39 beanShellFileName = (String) args[0];

40 userRequestFileName = (String) args|[1];
41

42

43 FSMBehaviour fsm = new FSMBehaviour(this);
44

45 // Register state A (first state)

204

105

B.1.

MAS

fsm.registerFirstState (new GetRequest(this), STATEA);

// Register state B
fsm.registerState (new AnalyzeRequest(this), STATEB);

// Register state C
fsm.registerState (new RealizeRequest (this), STATEC);

// Register state D
fsm.registerState (new SendResult(this), STATED);

// Register the transitions
fsm.registerDefaultTransition (STATEA, STATEB);
fsm.registerTransition (STATEB, STATEC, 1);

//Getting back to the first state if the request is unknown
fsm.registerTransition (STATEB, STATEA, 0);

fsm.registerDefaultTransition (STATE.C, STATED);
fsm.registerDefaultTransition (STATED, STATEA);

addBehaviour (fsm);

private class GetRequest extends Behaviour {

Boolean done = false;
private MessageTemplate mt;

public GetRequest (Agent agent) {
super (agent);

}

public void action () {
mt = MessageTemplate. MatchPerformative (ACLMessage .REQUEST) ;
msgRequest = receive (mt);

if (msgRequest != null) {
reply = msgRequest.createReply ();
try {

Object contentObject = msgRequest.getContentObject ();
if (contentObject instanceof Request) {

req = (Request) contentObject;

done = true;

}
} catch (UnreadableException e) {
e.printStackTrace ();

} else {
block ();

}
}

public boolean done() {

return (done);

}}// End of inner class

205

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

private class AnalyzeRequest extends OneShotBehaviour {
int exitValue = 0;

public AnalyzeRequest (Agent agent) {
super (agent);

}

public void action () {

if (req != null)

UserRequestDB userRequestDB = new UserRequestDB (userRequestFileName)
if (userRequestDB.contains(req))

exitValue = 1;

}
}

@Override
public int onEnd() {
return exitValue;

}
Y// End of inner class

public class RealizeRequest extends OneShotBehaviour {

public RealizeRequest (Agent agent) {
super (agent);

}

public void action () {

Interpreter i = new Interpreter ();
try {
i.set("myAgent", myAgent);

i.set("behaviour", this);
i.set("req", req);
i.source(beanShellFileName);

} catch (FileNotFoundException e) {
e.printStackTrace ();

} catch (IOException e) {
e.printStackTrace ();

} catch (EvalError e) {
e.printStackTrace ();

}

public void executeSubRequest (Request subReq, String serviceType,
String serviceName)
searchServiceProvider (serviceType , serviceName);
sendRequest (subReq) ;
getSubResult (subReq);
}

public void searchServiceProvider (String type, String name) {
try {
// Build the description used as template for the search

206

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

B.1. MAS

DFAgentDescription template = new DFAgentDescription ();

ServiceDescription templateSd = new ServiceDescription ();

System.out.println ("Service,provider search: " + serviceType + ":"
+ serviceName);

templateSd.setType(type);

templateSd.setName (name);

template.addServices (templateSd);

DFAgentDescription [] results = DFService.search (myAgent, template);
System.out.println (results.length);
serviceProviders = results;

} catch (FIPAException fe) {
fe.printStackTrace ();
serviceProviders = null;

}

public void sendRequest (Request request) {
if (serviceProviders.length > 0) {

// Send the cfp to all sellers

ACLMessage msg = new ACLMessage (ACLMessage .REQUEST);
for (int i = 0; i < serviceProviders.length; 4++i) {
msg. addReceiver (serviceProviders[i].getName());

try {
msg.setContentObject (request);

} catch (IOException el) {
el.printStackTrace ();

msg.setReplyWith ("request" 4 System.currentTimeMillis ());
myAgent . send (msg);
System.out.println ("Messagesent_ toyservice provider.") ;
// Prepare the template to get proposals
mt = MessageTemplate . and (
MessageTemplate. MatchConversationld ("conversationId"),
MessageTemplate. MatchInReplyTo (msg. getReplyWith ()));

} else {

System.out.println ("Service,provider not, found.");

}
}

public void getSubResult (Request request) {
if (serviceProviders.length > 0) {
ACLMessage reply = myAgent.receive (mt);

while (reply = null)
reply = myAgent.receive (mt);
try {

request . setResult ((Hashtable) reply.getContentObject ());
} catch (UnreadableException e) {

// TODO Auto—generated catch block
e.printStackTrace ();

207

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

225 }
226 }
227 |}

228
229 | }// End of inner class
230
231 | private class SendResult extends OneShotBehaviour {

233 public SendResult (Agent agent) {
234 super (agent);

236 |}

238 public void action () {

240 try {

241 reply .setPerformative (ACLMessage .INFORM) ;
242 reply .setContentObject (req.getResult ());
243 myAgent.send (reply);

244 } catch (IOException e)

245 e.printStackTrace ();

248 |}

250 | }// End of inner class

252 |}

Code extract B.2: Extract code of the Mediator agent.

B.1.3 Service provider Agent

package MAS;

import java.io.FileNotFoundException;

import java.io.lOException;

import java.util.Hashtable;

import java.util.Iterator;

import bsh.EvalError;

import bsh.Interpreter;

import jade.core.Agent;

10 |import jade.core.behaviours.Behaviour;

11 |import jade.core.behaviours.CyclicBehaviour;

12 |import jade.core.behaviours.FSMBehaviour;

13 |import jade.core.behaviours.OneShotBehaviour;

14 |import jade.core.behaviours. ParallelBehaviour;

15 |import jade.domain.DFService;

16 |import jade.domain.FIPAException;

17 |import jade.domain.FIPAAgentManagement. DFAgentDescription;
18 |import jade.domain.FIPAAgentManagement. ServiceDescription ;
19 |import jade.lang.acl.ACLMessage;

20 |import jade.lang.acl.MessageTemplate;

21 |import jade.lang.acl.UnreadableException;

OO UTEWN -

23 | public class ServiceProvider extends Agent {
24 private static final String STATEA = "A";
25 private static final String STATEB = "B";

208

B.1.

MAS

private static final String STATEC
private static final String STATED

IIC";
IIDII;

DFAgentDescription dfd;

private Request req;

private ACLMessage msgRequest, reply;
private String servicesFileName;
private String beanShellFileName;
private ServiceDB serviceDB;

@Override
protected void setup () {

dfd = new DFAgentDescription ();

dfd .setName (getAID ());

Object [] args = getArguments ();

if (args != null && args.length > 0)
servicesFileName = (String) args[0]
beanShellFileName = (String) args]|[1
servicesRegister ();

}

FSMBehaviour fsm = new FSMBehaviour(this);
// Register state A (first state)
fsm.registerFirstState (new GetRequest(this), STATEA);

R
I

// Register state B
fsm.registerState (new AnalyzeRequest(this), STATEB);

// Register state C
fsm.registerState (new RealizeRequest (this), STATEC);

// Register state D
fsm.registerState (new SendResult(this), STATED);

// Register the transitions
fsm.registerDefaultTransition (STATE.A, STATEB);
fsm.registerTransition (STATEB, STATEC, 1);

//Getting back to the first state if the request is unknown
fsm.registerTransition (STATEB, STATEA, 0);

fsm.registerDefaultTransition (STATE.C, STATED);
fsm.registerDefaultTransition (STATED, STATEA);

//The fsm behavior for handling the request
//from other agent and a behavior for proactive
//actions are executed in parallel
ParallelBehaviour b = new ParallelBehaviour ();
b.addSubBehaviour (fsm);

b.addSubBehaviour (new ProactiveAction (this));
addBehaviour (b);

}

protected void takeDown () {
// Deregister from the yellow pages
servicesDeregister ();

209

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

86

87 | }

88

89 | public void servicesRegister ()

90 serviceDB = new ServiceDB (servicesFileName);

91 Iterator it = serviceDB.getServiceDB ().iterator ();

92 Service service;

93 while (it.hasNext()) {

94 service = (Service) it .next ();

95 ServiceDescription sd = new ServiceDescription ();

96 sd.setType(service.getType());

97 sd .setName (service .getName ());

98 System.out. println (service.getType() + "u" + service.getName ());
99 dfd.addServices (sd);

100 }

101 try {

102 DFService.register (this, dfd);

103 } catch (FIPAException fe) {

104 System.out.println ("Service registrering exception.");
105 fe.printStackTrace ();

106 }

107

108 | }

109

110 public DFAgentDescription[] searchServiceProvider (String type,
111 String name) {

112 try

113 // Build the description used as template for the search
114 DFAgentDescription template = new DFAgentDescription ();
115 ServiceDescription templateSd = new ServiceDescription ();
116 System.out.println ("Service provider,search:," + serviceType + ":"
117 + serviceName);

118 templateSd.setType (type);

119 templateSd .setName (name);

120 template.addServices (templateSd);

121

122 DFAgentDescription [] results = DFService.search(this, template);
123 return results;

124

125 } catch (FIPAException fe) {

126 fe.printStackTrace ();

127 return null;

128 |}

129

130 | }

131

132 | public void servicesDeregister () {

133 try {

134 DFService. deregister (this);

135 } catch (FIPAException fe) {

136 fe.printStackTrace ();

137

138

139 | }

140

141 | public void servicesUpdate () {

142 servicesDeregister ();

143 dfd.clearAllServices ();

144 servicesRegister ();

210

145
146
147
148
149
150
151
152
153
154
155

157
158
159
160

B.1. MAS

System.gc ();

public void sendRequest (Request request, MessageTemplate mt,
DFAgentDescription [] serviceProviders)

if (serviceProviders.length > 0) {
System.out . println ("Service,provider found: " + serviceProviders.lengt
// Send the cfp to all sellers
ACLMessage msg = new ACLMessage(ACLMessage .REQUEST) ;
for (int i = 0; i < serviceProviders.length; ++i) {
msg.addReceiver (serviceProviders[i].getName());

try {

msg.setContentObject (request);

} catch (IOException el) {
el.printStackTrace ();

}

msg . setReplyWith ("request" 4+ System.currentTimeMillis ());
send (msg);

// Prepare the template to get proposals

mt = MessageTemplate. MatchInReplyTo (msg. getReplyWith ());
} else {

req.setResult (null);

}

}

public void getSubResult (Request request , MessageTemplate mt) {
ACLMessage reply = receive (mt);

while (reply = null)
reply = receive (mt);
try {

Request result = (Request) reply.getContentObject ();
request.setResult (result.getResult ());

} catch (UnreadableException e) {
e.printStackTrace ();

}

}

private class GetRequest extends Behaviour {
Boolean done = false;

private MessageTemplate mt;

public GetRequest(Agent agent) {
super (agent);

}

public void action () {
mt = MessageTemplate. MatchPerformative (ACLMessage . REQUEST) ;
msgRequest = receive (mt);

if (msgRequest != null) {
reply = msgRequest.createReply ();
try {

211

h);

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

204 Object contentObject = msgRequest.getContentObject ();
205 if (contentObject instanceof Request) {
206 req = (Request) contentObject;
207 done = true;

208

209

210 } catch (UnreadableException e) {
211 e.printStackTrace ();

212

213

214 } else {

215 block ();

216 }

217 |}

218

219 public boolean done() {

220

221 return (done);

222 |}

223

224 | }// End of inner class

225

226 private class AnalyzeRequest extends OneShotBehaviour {
227 int exitValue = 0;

228
229 public AnalyzeRequest (Agent agent) {
230 super (agent);

231
232 |}
233
234 public void action () {
235
236 if (req != null) {

237 if (serviceDB.containServiceName (req.getName()))
238 exitValue = 1;

239 }

240 |}

241
242 @Override

243 public int onEnd() {

244 return exitValue;
245 |}

246

247 | }// End of inner class
248

249 private class RealizeRequest extends OneShotBehaviour {
250
251 public RealizeRequest (Agent agent) {
252 super (agent);

}

253

254

255 public void action () {

256

257 Interpreter i = new Interpreter ();
258 try {

259 i.set("myAgent", myAgent);

260 i.set("behaviour", this);

261 i.set("req", req);

262 i.source (beanShellFileName);

263 } catch (FileNotFoundException e) {

212

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

1
2

B.2. SUPPORTING CLASSES

e.printStackTrace ();
} catch (IOException e) {
e.printStackTrace ();

} catch (EvalError e) {
e.printStackTrace ();

}
Y // End of inner class

private class SendResult extends OneShotBehaviour {

public SendResult (Agent agent) {
super (agent);

}

public void action () {

try {
reply .setPerformative (ACLMessage .INFORM) ;
reply .setContentObject (req.getResult ());
myAgent.send (reply);

} catch (IOException e) {
e.printStackTrace ();

}
}Y// End of inner class

private class ProactiveAction extends CyclicBehaviour {

public ProactiveAction (Agent agent) {
super (agent);

@Override
public void action () {
// TODO Auto—generated method stub

}
Y // End of inner class

}

Code extract B.3: Extract code of the Service provider agent.

B.2 Supporting Classes
B.2.1 A Simple Example of Servlet Connecting to Gateway agent

package MAS;

213

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

import jade.core.Profile;

import jade.util.leap.Properties;

import jade.wrapper.gateway.JadeGateway;
import java.io.lOException;

import java.util.Hashtable;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class MyServlet extends HttpServlet {
private final static String HOST = "localhost";
private final static String PORT = "8888";

@Override
public void init () throws ServletException {
super. init ();

// Setting which class will be the GateWayAgent
Properties pp = new Properties ();
pp.setProperty (Profile .MAIN.HOST, HOST);
pp.setProperty (Profile .MAIN.PORT, PORT);
JadeGateway.init ("MAS.Gateway", pp);

protected void doGet(HttpServletRequest request
HttpServletResponse response)
throws ServletException, IOException {

// Reading the user input
String bookTitle = request.getParameter ("bookTitle");

// Createing a request to send to the Gateway agent
Hashtable parameters = new Hashtable ();
parameters.put("title", bookTitle);

Request req = new Request("BookPrice");
req.setlnput (parameters);

try {

// Sending request to Gateway agent

JadeGateway . execute (req);

} catch (Exception e) {

e.printStackTrace ();

// Getting reply from the Gateway agent

if (req.getResult() = null)
request.setAttribute ("Reply", "Unknown,request.");
else {

Hashtable result = req.getResult ();
int price = (Integer) result.get("price");
request.setAttribute ("Reply", Integer.toString(price));

// Forwarding result to a JSP

this.getServletContext (). getRequestDispatcher ("myjsp.jsp")
.forward (request , response);

}

}

Code extract B.4: A simple example of a Servlet connecting with Gateway agent.

214

DO = = = = e e e
QOO TNV WNHFHFOOOTIO U R WN -

DN NN
INGIGCH R

N NN DD
0 3O Ut

29

B.2. SUPPORTING CLASSES

B.2.2 XMLReader

package MAS;

import java.io.lOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Scanner;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom. NodeList;
import org.xml.sax.SAXException;

public abstract class XMLReader {
protected Document dom;

protected DocumentBuilder db;
protected DocumentBuilderFactory dbf;
protected String fileName;

public abstract void update();
protected abstract void parseDocument ();
public abstract void printData ();

public XMLReader(String fileName) {
dbf = DocumentBuilderFactory.newInstance ();
// Using factory get an instance of document builder

try {

db = dbf.newDocumentBuilder ();

} catch (ParserConfigurationException e) {
e.printStackTrace ();

this.fileName = fileName;

}

protected void parseXmlFile () {

try {

// parse using builder to get DOM representation of the XML file
dom = db.parse(fileName);
} catch (SAXException se)
se.printStackTrace ();
} catch (IOException ioe) {
ioe.printStackTrace ();
}
}

protected String[] getTextValues(Element e, String[] tags) {
String [] textValues = new String[tags.length];

for (int i = 0; i < tags.length; i++)
textValues[i] = getTextValue(e, tags[i]);

215

===
N OO U WN —

13

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

return textValues;

}

protected String getTextValue(Element ele, String tagName) {
String textVal = null;
NodeList nl = ele.getElementsByTagName (tagName);
if (nl != null && nl.getLength() > 0) {
Element el = (Element) nl.item (0);
textVal = el.getFirstChild (). getNodeValue ();
return textVal;

protected int getIntValue(Element ele, String tagName) {
// in production application you would catch the exception
return Integer.parselnt (getTextValue(ele, tagName));

}

Code extract B.5: Code extract of XMLReader.

B.2.3 ServiceDB

package MAS;

import java.util.ArrayList;
import java.util.Iterator;

import org.w3c.dom.Element;
import org.w3c.dom.NodeList;

public class ServiceDB extends XMLReader {
private ArrayList serviceDB;

public ServiceDB(String fileName) {
super (fileName);
serviceDB = new ArrayList ();
parseXmlFile ();
parseDocument ();

}

public void update () {
serviceDB . clear ();

parseXmlFile ();
parseDocument ();

}

public boolean containServiceName (String serviceName) {
Iterator it = serviceDB.iterator ();

while (it.hasNext()) {

Service service = (Service) it.next ();

216

B.2. SUPPORTING CLASSES

if (service.getName().equalsIgnoreCase (serviceName))
return true;

return false;

}

protected void parseDocument () {
// get the root element
Element docEle = dom.getDocumentElement ();

// get a nodelist of elements
NodeList nl = docEle.getElementsByTagName ("Service");
if (nl != null && nl.getLength() > 0) {
for (int i = 0; i < nl.getLength(); i++) {
// get the employee element
Element el = (Element) nl.item(1i);
// get the Employee object

String [] tags = { "Type", "Name" };
String [|] textValues = getTextValues(el, tags);
Service service = new Service(textValues[0], textValues[1]);

// add it to list
serviceDB.add(service);

}
}
}

public ArrayList getServiceDB () {
return serviceDB;

public void printData () {

Iterator it = serviceDB.iterator ();
while (it.hasNext()) {
System.out.println (it .next ().toString ());

}
}

}

Code extract B.6: Code extract of ServiceDB.

B.2.4 Service

HFOOWOIO Ut W~

==

package MAS;
public class Service {
String type;
String name;

public Service(String type, String name) {

super ()
this.type = type;
this .name = name;

217

12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35

= e e e e e
OO TR WN—R OO U R WN =

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

}

public String getType() {
return type;

}

public void setType(String type) {
this.type = type;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

@Override
public String toString () {
return "Service[type=" + type + ", name=" + name + "]";

Code extract B.7: Code extract of Service.

B.2.5 UserRequestDB

package MAS;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document ;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import org.xml.sax.SAXException;

public class UserRequestDB extends XMLReader {
ArrayList userRequestDB;

public UserRequestDB(String fileName) {
super (fileName);
userRequestDB = new ArrayList ();
parseXmlFile ();
parseDocument ();

}

public void update() {
userRequestDB . clear ();

218

B.2. SUPPORTING CLASSES

parseXmlFile ();
parseDocument ();

}

protected void parseDocument () {

// get the root element
Element docEle = dom.getDocumentElement ();

// get a modelist of elements
NodeList nl = docEle.getElementsByTagName ("Request");
if (nl != null && nl.getLength() > 0) {
for (int i = 0; i < nl.getLength(); i++) {
// get the employee element
Element el = (Element) nl.item(1i);
// get the Employee object
String [] tags = { "Name" };
String [|] textValues = getTextValues(el,

tags);
Request request = new Request(textValues[0]);
// add it to list
userRequestDB.add (request);
}
}
}

public void printData () {

Iterator it = userRequestDB.iterator ();
while (it.hasNext()) {
System.out.println (it.next ().toString ());
}

}

public boolean contains(Request req) {

Iterator it = userRequestDB.iterator ();

Request r;

while (it.hasNext()) {
r = (Request) it.next();
if (r.getName().equalsIgnoreCase(req.getName()))
return true;

return false;

}
}

Code extract B.8: Code extract of UserRequestDB.

B.2.6 Request

package MAS;
import java.io. Serializable;
import java.util.Hashtable;

public class Request implements Serializable {
private String name;

219

OO UT = WN —

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

private Hashtable input;
private Hashtable result;

public

}

public

public

}

public

public

public

public

}

public

}

public

}

Request () {
super ();

Request (String name) {
this.name = name;

Request (String name, Hashtable data) {
this.name = name;
this.input = data;

String getName() {
return name;

void setName(String name) {
this.name = name;

Hashtable getInput() {
return input;

void setInput (Hashtable input) {
this.input = input;

Hashtable getResult () {
return result ;

void setResult (Hashtable result) {
this.result = result;

@Override

public
}
}

String toString () {
return "UserRequest,[name=" 4 name + "]";

B.2.7

Code extract B.9: Code extract of Request.

BookDB

package MAS;

import
import

import
import

public

java.util.ArrayList;
java.util.Iterator;

org.w3c.dom. Element;
org.w3c.dom. NodeList ;

class BookDB extends XMLReader {

220

B.2. SUPPORTING CLASSES

private ArrayList bookDB;

public BookDB(String fileName) {
super (fileName);
bookDB = new ArrayList ();
parseXmlFile ();
parseDocument ();

}

public void update() {
bookDB. clear ();
parseXmlFile ();
parseDocument ();

}

public boolean containBookTitle(String title) {
Iterator it = bookDB.iterator ();
while (it .hasNext()) {
Book book = (Book) it.next ();
if (book.getTitle ().equalsIgnoreCase(title))
return true;

return false;

}

protected void parseDocument () {

// get the root element
Element docEle = dom.getDocumentElement ();

// get a modelist of elements
NodeList nl = docEle.getElementsByTagName ("Book");
if (nl != null && nl.getLength() > 0) {
for (int i = 0; i < nl.getLength(); i++) {
// get the employee element
Element el = (Element) nl.item(1i);
// get the Employee object
String [] tags = { "Title", "Price" };
String [|] textValues = getTextValues(el, tags);
String title=textValues[0];
int price=Integer.parselnt(textValues[1])
Book book = new Book(title , price);
// add it to list
bookDB . add (book);

}
}
}

public ArrayList getBookDB () {
return bookDB;

public Book getBook(String title) {
Iterator it = bookDB.iterator ();

221

=
NHROOXOTIDUT R WN —

13

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

while (it.hasNext()) {

Book book = (Book) it.next ();

if (book.getTitle ().equalsIgnoreCase(title))
return book;

)

return null;

}

public void printData () {

Iterator it = bookDB.iterator ();
while (it.hasNext()) {
System.out.println (it.next ().toString ());

Code extract B.10: Code extract of BookDB.

B.2.8 Book

package MAS;
import java.io. Serializable;

public class Book implements Serializable {
private String title;

private int price;

public Book(String title ,int price){

this. title=title;

this. price=price;

}

@Override

public String toString () {

return "Book,[title=" + title + ", price=" + price + "1";

}
public String getTitle () {
return title;

public void setTitle(String title) {
this. title = title;

}
public int getPrice() {
return price;

public void setPrice(int price) {
this.price = price;
}

Code extract B.11: Code extract of Book.

222

HF OO0 Utk W+~

= — =
NHFROOOIO0 Ut W~

OO W

B.3. XML FILES

B.3 XML Files
B.3.1 UserRequests

<?xml version="1.0" encoding="UTF-8"7>
<UserRequest>
<Request>
<Name>BookPrice</Name>

</Request>

<Request>
<Name>BookCatalogue</Name>

</Request>

</UserRequest>

Code extract B.12: Code extract of the UserRequest XML file.

B.3.2 Services

<?xml version="1.0" encoding="UTF-8"7>
<Services>
<Service>
<Type>Book</Type>
<Name>BookPrice</Name>
</Service>
<Service>
<Type>Book</Type>
<Name>BookCatalogue</Name>
</Service>

</Services>

Code extract B.13: Code extract of Services XML file.

B.3.3 Books
<?xml version="1.0" encoding="UTF-8"7>
<BookCatalogue>
<Book>
<Title>JADE</ Title>
<Price>10</Price>
</Book>
<Book>
<Title>Agent</Title>
<Price>20</Price>
</Book>
<Book>
<Title>Java</Title>
<Price>30</Price>
</Book>
</BookCatalogue>

Code extract B.14: Code extract of Books XML file.

223

el el
QR WNHFEF OO0 Ut WN -

16

OO WN

APPENDIX B. MAS IMPLEMENTATION WITH JADE: SOURCE CODES

B.4 Bean Shell Files
B.4.1 A Simple Example of Bean Shell File for the Mediator Agent

import java.util.Hashtable;

import jade.core.Agent;

import jade.core.behaviours.OneShotBehaviour;
import MAS. Request ;

import MAS. Mediator;

public void executeSubRequest (Request subReq, String serviceType,
String serviceName)
behaviour.searchServiceProvider (serviceType, serviceName);
behaviour.sendRequest (subReq);
behaviour. getSubResult (subReq);

}

if (req.getName().equals("BookPrice")) {
executeSubRequest (req,"Book" ,"BookPrice");

} else if (req.getName().equals("BookCatalogue")){
executeSubRequest (req ,"Book" ,"BookCatalogue");
}

Code extract B.15: Code extract of Bean shell script for the Mediator.

B.4.2 A Simple Example of Bean Shell File for a Service provider
Agent

import java.util.Hashtable;

import jade.core.Agent;

import jade.core.behaviours.OneShotBehaviour;
import MAS. Request ;

import MAS. BookDB;

import MAS. Mediator ;

import MAS. Book;

if (req.getName().equals("BookPrice")) {
BookDB bookDB = new BookDB("BookCatalogue.xml");
Hashtable parameters = new Hashtable ();
Hashtable inputs = req.getlnput ();
String title = inputs.get("title");
Book book = bookDB. getBook(title);
if (book != null) {
Hashtable result = new Hashtable ();
result .put("price", book.getPrice ());
req.setResult (result);

} else if (req.getName().equals("BookCatalgue")) {
BookDB bookDB = new BookDB("BookCatalogue.xml");
req.setResult (bookDB. getBookDB ());

Code extract B.16: Code extract of Bean shell script for a Service provider.

224

Appendix C

Component Management
System: Screenshots

Main Form

D Components Management System

Edit ey View View View

component component

components components components

View

components components Editvendor

Edit domain Edittype Edit platform Edit language

byvendor bydomain by type by platform by language
Component
]
D platform .
platform name - |Platform D ~
a MySAP ;
Ms Window 1
Linux 2
‘ 1.231.122,00€ o
o ‘1
L Java v
endor [sap 3
Record: M 1of2 L ¥ No Filter | Search
Medical v ‘
[Ere v
Q = Load quality file | | Open quality file
Load feauture View feature
model file model
AP Load API file Open AP file
H 4 New Delete M

Figure C.1: Edit component in ComMS.

225

APPENDIX C. COMPONENT MANAGEMENT SYSTEM: SCREENSHOTS

Domain Medical ~
Type
pitorn

Language

Figure C.2: Search component in ComMS.

Medical = SAP MySAP 2 1.231.122,00€ Java Ms Window

Figure C.3: Components search result in ComMS.

Domain Medical
Type ERP
Vendor SAP Language Java
Component MySAP Version 2
Platform Ms Window Cost 1.231.122,00 €

Pagelofl

Figure C.4: Components search result report in ComMS.

226

Component

Record: W 4 30f3 + M+ [& NoFilter | Search

Figure C.5: View list of components per vendor in ComMS.

Vendor SAP
Domain Medical
Type ERP
Component MySAP Version 2
Language Java Cost 1.231.122,00€

Supported platform
Linux

Ms Window

mardi 11 septembre 2012 Pagelofl

Figure C.6: List of components grouped by its vendor report in ComMS.

227

APPENDIX C. COMPONENT MANAGEMENT SYSTEM: SCREENSHOTS

Name Medical | ﬁ

Component

L Vendor - ‘Component - Version - Cost - Type - Language

Figure C.7: View list of components per domain in ComMS.

Domain Medical
Type ERP
Component MySAP Cost 1.231.122,00€
Language Java Vendor SAP
Supported platform Version 2
Linux
Ms Window

Figure C.8: List of components grouped by its domain report in ComMS.

228

Name

|

Component

Record: 14 4303 | » Mo | W noFiter | searcn

Figure C.9: View list of components per vendor in ComMS.

Type ERP
Component MySAP Cost 1.231.122,00€
Language Java Vendor SAP
Domain Medical Version 2

Supported platform

Linux

Ms Window

mardi 11 septembre 2012 Pagelofl

Figure C.10: List of components grouped by its type report in ComMS.

229

APPENDIX C. COMPONENT MANAGEMENT SYSTEM: SCREENSHOTS

Recora 4411 >_0 i | o e [[Searen

Figure C.11: View list of components per platform in ComMS.

Platform Linux
Domain Medical
Type ERP
Component Language Version Cost Vendor
NMySAP Java 2 1.231.122,00€ SAP
Platform Ms Window
Domain Medical
Type ERP
Component Language Version Cost Vendor
MySAP Java 2 1.231.122,00€ SAP

Pagelofl

Figure C.12: List of components grouped by its platform report in ComMS.

230

Name Java print

Component

Record: M 43013 | » M » | W NoFilter | Search

Figure C.13: View list of components per programming language in ComMS.

Language Java
Domain Medical
Type ERP
Component MySAP Cost 1.231.122,00€
Version 2 Vendor SAP

Supported platfrom

Linux

Ms Window

Pagelofl

Figure C.14: List of components grouped by its programming language report in
ComMS.

231

APPENDIX C. COMPONENT MANAGEMENT SYSTEM: SCREENSHOTS

| Components Management System

© Address
o ’SAP | b
’ | Street Rue des Annettes

URL | city LN
Email |
Country [Belgium ~
size sig ~
Reputation |Goud E
Financial position Isumj :l
Consultant service =
Domain
Name - | DomainiD ~
18
Medical 2
Human Resource 3
*
Record: 4 <1013 b M b | K NoFilter | search

bl e o] prrere] 28

Figure C.15: Edit vendor information in ComMS.

232

D 1
Name SAP
Phone
URL
Email
Size lsig |
Reputation |‘Good |
Financial position |‘Good |
Consultant service 2
No 2
Street Rue des Annettes
City LLN
Country Belgium
Domain
Financial
Human Resource
Medical
O w »

Figure C.16: List of vendors report in ComMS.

Name Ms Window

Description

[T P S

Figure C.17: Edit platform information in ComMS

233

	I Introduction
	Introduction
	Research Context
	Research Motivation
	Scope of the Thesis
	Research Method
	State of the Art
	Architectural Design for CBSD
	Methodology Definition
	Tool Development

	Reading Map

	II State of the Art
	Software Engineering: A Survey of Relevant Approaches
	Software Engineering: a Definition
	Requirements Engineering
	The i* Framework
	The NFR Framework

	System Development Life Cycle Models
	The Sequential Model
	The V-Model
	The Incremental Model

	Object-Oriented Software Engineering
	The Unified Modeling Language
	The Rational Unified Process

	Agent-Oriented Software Engineering
	Benefits of AOSE
	MAS Development Methodologies

	Chapter Summary

	Component Based Software Development
	COTS Component
	COTS Definition
	COTS Component Granularity
	Distributed Component
	Business Component
	System-Level Component

	CBSD Life Cycle Models
	The Sequential Model
	The V-Model
	The Y-Model
	The Evolutionary Process for Integrating COTS

	COTS Selection Processes
	Basic Structure of COTS Selection Process
	Requirements-Driven COTS Selection Approaches
	Mismatch-Handling Aware COTS Selection
	Multiple COTS Selection
	Social-Technical Approach to COTS Evaluation

	COTS Evaluation Strategies
	Decision Making Techniques for COTS Selection
	Weighted Score Method or Weighted Average Sum
	Analytic Hierarchy Process (AHP)
	Gap Analysis Approach

	Software Project Management for CBSD
	Effort Estimation Model
	Quality Management
	Risk Management
	Organizational Change Management

	Chapter Summary

	III Architectural Design for COTS-Based System Development
	Architectural Foundations
	A Characterization for COTS Components
	An Ontology for COTS Component Representation
	Components Integration: Definition and Characteristics
	An Agent-Oriented Approach to Systems Integration
	Chapter Summary

	An Agent-Driven Integration Architecture
	Integration Architecture
	Vertical Architectural Layers and Middleware Composition
	Agent Model
	MAS Architectural Description
	Social Dimension
	Rationale Dimension
	Communicational Dimension
	Dynamic Dimension

	Implementation Model
	Overview of the JADE Framework
	Agents Creation
	Agent Communication
	Defining Agents' Capabilities
	Agent Discovery: The Yellow Page Service
	Integrating JADE with a Rule Engine
	Integrating JADE with a Scripting Engine

	MAS Implementation with JADE
	Connecting GUI and MAS layers
	Gateway Agent Implementation
	Mediator Agent Implementation
	Service provider Agent Implementation

	Chapter Summary

	IV RecIProC: Rationale Incremental and Iterative Process for COTS-Based System Development
	Towards an Agent-Oriented Methodology for CBSD
	Weaknesses of Existing CBSD Methods
	Shortcomings
	Specifications for RecIProC

	Adopting the i* Framework for Our Methodology
	Rationale Incremental and Iterative Process for CBSD
	The Software Process Engineering Meta-Model (SPEM)
	Process Model
	Business Analysis Phase
	Studying the Business Context
	Defining the Scope of the Project
	Analyzing Strategic Impacts

	Requirements Analysis Phase
	Defining the Integrated System Architecture
	Defining the Functional Requirements of Each Required System
	Defining the NFRs of Each Required System

	COTS Product Identification Phase
	COTS Product Evaluation Phase
	Decision Making Phase
	COTS Customization Phase
	COTS Integration Phase

	Ontology Alignment
	Chapter Summary

	Methodology Application
	The TransLogisTIC Project
	RecIProC Application
	Business Analysis Phase
	Studying the Business Context
	Defining the Scope of the Project
	Analyzing Strategic Impacts

	Requirements Analysis Phase
	Defining the Integrated System Architecture
	Defining the Functional Requirements of Each Required System
	Defining the NFRs of Each Required System

	COTS Product Identification Phase
	COTS Product Evaluation and Decision Making Phases
	COTS Customization Phase
	COTS Integration Phase

	CASE Tools
	DesCARTES
	Extension of the i* Editor
	The BPMN Editor

	Hierarchy Graph Modeling
	Analyzing the RFP Response
	Components Management System

	Chapter Summary

	V Conclusion
	Conclusion
	Summary of Contributions
	Advantages of the Proposed Architectural Design
	Future Work
	List of Publications

	Epistemological Foundation
	Changes in Software Development Methodology
	Kuhn's ``paradigm shift"
	Lakatos' ``research programme"
	CBSD: Paradigm Shift vs Research Programme
	Conclusion

	MAS Implementation with JADE: Source codes
	MAS
	Gateway Agent
	Mediator Agent
	Service provider Agent

	Supporting Classes
	A Simple Example of Servlet Connecting to Gateway agent
	XMLReader
	ServiceDB
	Service
	UserRequestDB
	Request
	BookDB
	Book

	XML Files
	UserRequests
	Services
	Books

	Bean Shell Files
	A Simple Example of Bean Shell File for the Mediator Agent
	A Simple Example of Bean Shell File for a Service provider Agent

	Component Management System: Screenshots

