User menu

Loss of Smad4 function in pancreatic tumors: C-terminal truncation leads to decreased stability.

Bibliographic reference Maurice, D ; Pierreux, Christophe ; Howell, M ; Wilentz, R E ; Owen, M J ; et. al. Loss of Smad4 function in pancreatic tumors: C-terminal truncation leads to decreased stability.. In: Journal of Biological Chemistry, Vol. 276, no. 46, p. 43175-81 (2001)
Permanent URL http://hdl.handle.net/2078.1/132281
  1. Shi Yigong, Wang Yan-Fei, Jayaraman Lata, Yang Haijuan, Massagué Joan, Pavletich Nikola P., Crystal Structure of a Smad MH1 Domain Bound to DNA, 10.1016/s0092-8674(00)81600-1
  2. Massague J., NEW EMBO MEMBERS REVIEW: Transcriptional control by the TGF-beta/Smad signaling system, 10.1093/emboj/19.8.1745
  3. Massagué Joan, Blain Stacy W, Lo Roger S, TGFβ Signaling in Growth Control, Cancer, and Heritable Disorders, 10.1016/s0092-8674(00)00121-5
  4. Akhurst Rosemary J., Balmain Allan, Genetic events and the role of TGFβ in epithelial tumour progression, 10.1002/(sici)1096-9896(199901)187:1<82::aid-path248>3.0.co;2-8
  5. Jonson Tord, Gorunova Ludmila, Dawiskiba Sigmund, Andr�n-Sandberg �ke, Stenman G�ran, ten Dijke Peter, Johansson Bertil, H�glund Mattias, Molecular analyses of the 15q and 18qSMAD genes in pancreatic cancer, 10.1002/(sici)1098-2264(199901)24:1<62::aid-gcc9>3.0.co;2-4
  6. Riggins, Cancer Res., 57, 2578 (1997)
  7. Reiss, Oncol. Res., 9, 447 (1997)
  8. Gold, Crit. Rev. Oncog., 10, 303 (1999)
  9. Duff EK, Clarke AR, Smad4 (DPC4) - a potent tumour suppressor?, 10.1038/bjc.1998.731
  10. Houlston R., Bevan S., Williams A., Young J., Dunlop M., Rozen P., Eng C., Markie D., Woodford-Richens K., Rodriguez-Bigas M. A., Leggett B., Neale K., Phillips R., Sheridan E., Hodgson S., Iwama T., Eccles D., Bodmer W., Tomlinson I., Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases, 10.1093/hmg/7.12.1907
  11. Chacko Benoy M., Qin Bin, Correia John J., Lam Suvana S., de Caestecker Mark P., Lin Kai, 10.1038/84995
  12. Howe J. R., Mutations in the SMAD4/DPC4 Gene in Juvenile Polyposis, 10.1126/science.280.5366.1086
  13. Woodford-Richens, Cancer Res., 60, 2477 (2000)
  14. Grady, Cancer Res., 59, 320 (1999)
  15. Hahn S. A., Schutte M., Hoque A. T. M. S., Moskaluk C. A., da Costa L. T., Rozenblum E., Weinstein C. L., Fischer A., Yeo C. J., Hruban R. H., Kern S. E., DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1, 10.1126/science.271.5247.350
  16. Schutte, Cancer Res., 56, 2527 (1996)
  17. Hata Akiko, Lo Roger S., Wotton David, Lagna Giorgio, Massagué Joan, Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4, 10.1038/40424
  18. Shi Yigong, Hata Akiko, Lo Roger S., Massagué Joan, Pavletich Nikola P., A structural basis for mutational inactivation of the tumour suppressor Smad4, 10.1038/40431
  19. Eppert Kolja, Scherer Stephen W, Ozcelik Hilmi, Pirone Rosa, Hoodless Pamela, Kim Hyeja, Tsui Lap-Chee, Bapat Bharati, Gallinger Steven, Andrulis Irene L, Thomsen Gerald H, Wrana Jeffrey L, Attisano Liliana, MADR2 Maps to 18q21 and Encodes a TGFβ–Regulated MAD–Related Protein That Is Functionally Mutated in Colorectal Carcinoma, 10.1016/s0092-8674(00)80128-2
  20. Xu J., Attisano L., Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway, 10.1073/pnas.97.9.4820
  21. Lagna Giorgio, Hata Akiko, Hemmati-Brivanlou Ali, Massagué Joan, Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways, 10.1038/383832a0
  22. Zhang Ying, Musci Thomas, Derynck Rik, The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function, 10.1016/s0960-9822(06)00123-0
  23. Wong Carolyn, Rougier-Chapman Elissa M., Frederick Joshua P., Datto Michael B., Liberati Nicole T., Li Jian-Ming, Wang Xiao-Fan, Smad3-Smad4 and AP-1 Complexes Synergize in Transcriptional Activation of the c-Jun Promoter by Transforming Growth Factor β, 10.1128/mcb.19.3.1821
  24. Howell M., XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos, 10.1093/emboj/16.24.7411
  25. Bardwell V J, Treisman R, The POZ domain: a conserved protein-protein interaction motif., 10.1101/gad.8.14.1664
  26. Evan G I, Lewis G K, Ramsay G, Bishop J M, Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product., 10.1128/mcb.5.12.3610
  27. Howell Michael, Itoh Fumiko, Pierreux Christophe E., Valgeirsdottir Sigridur, Itoh Susumu, ten Dijke Peter, Hill Caroline S., Xenopus Smad4β Is the Co-Smad Component of Developmentally Regulated Transcription Factor Complexes Responsible for Induction of Early Mesodermal Genes, 10.1006/dbio.1999.9430
  28. Wilentz Robb E., Su Gloria H., Dai Jia Le, Sparks Andrew B., Argani Pedram, Sohn Taylor A., Yeo Charles J., Kern Scott E., Hruban Ralph H., Immunohistochemical Labeling for Dpc4 Mirrors Genetic Status in Pancreatic Adenocarcinomas, 10.1016/s0002-9440(10)64703-7
  29. Jayaraman Lata, Massagué Joan, Distinct Oligomeric States of SMAD Proteins in the Transforming Growth Factor-β Pathway, 10.1074/jbc.m005799200
  30. Wieser, EMBO J., 14, 2199 (1995)
  31. Whitman M., Smads and early developmental signaling by the TGFbeta superfamily, 10.1101/gad.12.16.2445
  32. ten Dijke Peter, Miyazono Kohei, Heldin Carl-Henrik, Signaling inputs converge on nuclear effectors in TGF-β signaling, 10.1016/s0968-0004(99)01519-4
  33. Chen Xin, Rubock Melissa J., Whitman Malcolm, A transcriptional partner for MAD proteins in TGF-β signalling, 10.1038/383691a0
  34. Chen Xin, Weisberg Ellen, Fridmacher Valerie, Watanabe Minoru, Naco Grace, Whitman Malcolm, 10.1038/38008
  35. Huang, EMBO J., 14, 5965 (1995)
  36. Yeo Chang-Yeol, Chen Xin, Whitman Malcolm, The Role of FAST-1 and Smads in Transcriptional Regulation by Activin during EarlyXenopusEmbryogenesis, 10.1074/jbc.274.37.26584
  37. Hershko Avram, Ciechanover Aaron, THE UBIQUITIN SYSTEM, 10.1146/annurev.biochem.67.1.425
  38. Hill, Cur. Opin. Genet. Dev, 11, 534 (2001)
  39. Smith, EMBO J., 12, 4463 (1993)
  40. Graff Jonathan M, Bansal Anu, Melton Douglas A, Xenopus Mad Proteins Transduce Distinct Subsets of Signals for the TGFβ Superfamily, 10.1016/s0092-8674(00)81249-0
  41. Qin Bin, Lam Suvana SW, Lin Kai, Crystal structure of a transcriptionally active Smad4 fragment, 10.1016/s0969-2126(00)88340-9
  42. Shi Yigong, Structural insights on Smad function in TGFβ signaling, 10.1002/1521-1878(200103)23:3<223::aid-bies1032>3.0.co;2-u
  43. Wisotzkey, Development, 125, 1433 (1998)
  44. de Caestecker Mark P., Yahata Tetsuro, Wang David, Parks W. Tony, Huang Shixia, Hill Caroline S., Shioda Toshi, Roberts Anita B., Lechleider Robert J., The Smad4 Activation Domain (SAD) Is a Proline-rich, p300-dependent Transcriptional Activation Domain, 10.1074/jbc.275.3.2115
  45. Germain, Genes Dev., 14, 435 (2000)
  46. Woodford-Richens K. L., Rowan A. J., Gorman P., Halford S., Bicknell D. C., Wasan H. S., Roylance R. R., Bodmer W. F., Tomlinson I. P. M., SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway, 10.1073/pnas.171321498
  47. Xiao Z., Liu X., Henis Y. I., Lodish H. F., A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation, 10.1073/pnas.97.14.7853
  48. Xiao Zhan, Liu Xuedong, Lodish Harvey F., Importin β Mediates Nuclear Translocation of Smad 3, 10.1074/jbc.c000345200
  49. Pierreux C. E., Nicolas F. J., Hill C. S., Transforming Growth Factor beta -Independent Shuttling of Smad4 between the Cytoplasm and Nucleus, 10.1128/mcb.20.23.9041-9054.2000
  50. Liu F., Pouponnot C., Massague J., Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta -inducible transcriptional complexes, 10.1101/gad.11.23.3157