User menu

Effects of antisense hsp27 gene expression in osteosarcoma cells.

Bibliographic reference Rondeaux, P ; Horman, Sandrine ; Galand, P ; Mairesse, N. Effects of antisense hsp27 gene expression in osteosarcoma cells.. In: In vitro cellular & developmental biology. Animal, Vol. 33, no.9, p. 655-8 (1997)
Permanent URL
  1. Benndorf, K.; Hayed, K.; Ryazantsev, S., et al. Phosphorylation and supramolecular organization of murine small heat shock protein hsp25 abolish its actin polymerization-inhibiting activity. J. Biol. Chem. 269:20780–20784; 1994.
  2. Ben Ze’ev, A. The cytoskeleton in cancer cells. Biochim. Biophys. Acta 80:197–212; 1994.
  3. Bird, T. A.; Kyriakis, J. M.; Tysher, L., et al. Interleukin-1 activates p54 mitogen-activated protein (MAP) kinase/stress-activated protein kinase by a pathway independent of p21ras, Raf-1 an MAP kinase kinase. J. Biol. Chem. 269:31836–31844; 1994.
  4. Cairns, J.; Qin, S.; Phip, R., et al. Dephosphorylation of the small heat shock protein hsp27 in vivo by protein phosphatase 2A. J. Biol. Chem. 269:9176–9183; 1994.
  5. Chen, J.; Martin, B. L.; Brautigan, D. L. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257:1261–1264; 1992.
  6. Ciocca, D. R.; Oesterreich, S.; Chamness, G. C., et al. Biological and clinical implications of heat shock protein 27000 (hsp27). J. Natl. Cancer Inst. 85:1558–1570; 1993.
  7. Engel, K.; Ahlers, A.; Brach, M., et al. MAPKAP kinase 2 is activated by heat shock and TNF-α: in vivo phosphorylation of small heat shock protein results from stimulation of the MAP kinase cascade. J. Cell. Biochem. 57:321–330; 1995.
  8. Folkman, J.; Moscona, A. Role of cell shape in growth control. Nature 273:345–349; 1978.
  9. Freshney, N. W.; Rawlinson, L.; Guesdon, F., et al. Interleukin-1 activates a novel protein cascade that results in the phosphorylation of hsp27. Cell 78:1039–1049; 1994.
  10. Guy, G. R.; Philip, R.; Tan, Y. H. Activation of protein kinases and the inactivation of protein phosphatase 2A in tumour necrosis factor and interleukin-1 signal-transduction pathways. Eur. J. Biochem. 229:503–511; 1995.
  11. Hepburn, A.; De Molle, D.; Boeynaems, J. M., et al. Rapid phosphorylation of 26 kD protein induced by tumor necrosis factor. FEBS Lett. 227:175–178; 1988.
  12. Kinelas-Mugge, I.; Trautinger, F. Increased expression of the Mr 27000 heat shock protein (hsp27) in in vitro differentiated human keratinocytes. Cell Growth Diff. 5:777–781; 1994.
  13. Lavoie, J. N.; Hickey, E.; Weber, L. A., et al. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J. Biol. Chem. 268:24210–24214; 1993.
  14. Mairesse, N.; Horman, S.; Mosselmans, R., et al. Antisense inhibition of hsp27 production affects growth rate and cytoskeletal organization in MCF-7 cells. Cell. Biol. Int. 20:205–212; 1996.
  15. Miron, T.; Vancompernolle, K.; Vanderkerckhove, J., et al. A 25 kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J. Cell. Biol. 114:255–261; 1991.
  16. Miyamoto, S.; Teramoto, H.; Coso, O. A., et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell. Biol. 131:791–805; 1995.
  17. Morino, N.; Mimura, T.; Hamasaki, K., et al. Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-1 and p42erk-2. J. Biol. Chem. 270:269–273; 1995.
  18. Nobes, C. D.; Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stressfibers, lamellipodia, and filopodia. Cell 81:53–62; 1995.
  19. Parsons J. T., Schaller M. D., Hildebrand J., Leu T.-H., Richardson A., Otey C., Focal adhesion kinase: structure and signalling, 10.1242/jcs.1994.supplement_18.16
  20. Pienta, K. J.; Hoover, C. N. Coupling of cell structure to cell metabolism. J. Cell. Biochem. 55:16–21; 1994.
  21. Pienta, K. J.; Partin, A. W.; Coffey, D. S. Cancer as a disease of DNA organization and dynamic cell structure. Cancer Res. 49:2525–2532; 1989.
  22. Rana B, Mischoulon D, Xie Y, Bucher N L, Farmer S R, Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors., 10.1128/mcb.14.9.5858
  23. Roger, P. P.; Rickaert, F.; Lamy, F., et al. Actin stress fibers disruption and tropomyosin isoform switching in normal thyroid cells stimulated by thyrotropin and phorbol esters. Exp. Cell Res. 182:1–13; 1989.
  24. Rouse, J.; Cohen, P.; Trignon, S., et al. A novel kinase triggered by stress and heat shock that stimulates MAPKAP kinase 2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037; 1994.
  25. Ryan, M. P.; Higgins, P. J. Control of p52 (PAI-1) gene expression in normal and transformed rat kidney cells: relationship between p52 (PA-I) induction and ctin cytoarchitecture. In: Estes, J. E. and Higgins, P. J. ed. Actin: Biophysics, Biochemistry, and Cell Biology. New York: Plenum Press; 215–230; 1994.
  26. Shakoori, A. R.; Oberdorf, A. M.; Owen, T. A., et al. Expression of heat shock genes during differentiation of mammalian osteoblasts and promyelocytic leukemia cells. J. Cell. Biochem. 48:277–287; 1992.
  27. Shibanuma, M.; Kuroki, T.; Nose, K. Cell cycle dependent phosphorylation of hsp28 by TGFB1 and H2O2 in normal mouse osteoblastic cells (MC3T3-E1), but not in their RAS transformants. Biochem. Biophys. Res. Comm. 187:1418–1425; 1992.
  28. Spector, N. L.; Ryan, C.; Samson, W., et al. Heat shock protein is a unique marker of growth arrest during macrophage differentiation of HL-60 cells. J. Cell. Physiol. 156:619–625; 1993.
  29. Stokoe David, Engel Katrin, Campbell David G., Cohen Philip, Gaestel Matthias, Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins, 10.1016/0014-5793(92)81216-9
  30. Welch, W. J. Phorbol ester, calcium ionophore and serum added to quiescent rat embryo-fibroblast cells, all result in the elevated phosphorylation of two 28,000 dalton mammalian stress proteins. J. Biol. Chem. 260:3058–3062; 1985.