User menu

Stationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maxima

  • Open access
  • PDF
  • 339.26 K
  1. Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations with bounded potentials. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 7(3), 155–160 (1996)
  2. Ambrosetti A., Badiale M., Cingolani S., Semiclassical States of Nonlinear Schrödinger Equations, 10.1007/s002050050067
  3. Ambrosetti Antonio, Felli Veronica, Malchiodi Andrea, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, 10.4171/jems/24
  4. Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problems on $${\mathbb{R}^n}$$ . In: Progress in Mathematics, vol. 240. Birkhäuser, Boston (2006)
  5. Ambrosetti A., Malchiodi A., Ruiz D., Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, 10.1007/bf02790279
  6. Ba Na, Deng Yinbin, Peng Shuangjie, Multi-peak bound states for Schrödinger equations with compactly supported or unbounded potentials, 10.1016/j.anihpc.2010.05.003
  7. Bidaut-Veron Marie-Françoise, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, 10.1007/bf00251552
  8. Bonheure Denis, Di Cosmo Jonathan, Van Schaftingen Jean, Nonlinear Schrödinger equation with unbounded or vanishing potentials: Solutions concentrating on lower dimensional spheres, 10.1016/j.jde.2011.10.004
  9. Bonheure Denis, Van Schaftingen Jean, Nonlinear Schrödinger equations with potentials vanishing at infinity, 10.1016/j.crma.2006.04.011
  10. Bonheure Denis, Van Schaftingen Jean, Bound state solutions for a class of nonlinear Schrödinger equations, 10.4171/rmi/537
  11. del Pino Manuel, Felmer Patricio L., Local mountain passes for semilinear elliptic problems in unbounded domains, 10.1007/bf01189950
  12. del Pino Manuel, Felmer Patricio L., Semi-classical States for Nonlinear Schrödinger Equations, 10.1006/jfan.1996.3085
  13. Del Pino Manuel, Felmer Patricio L., Multi-peak bound states for nonlinear Schrödinger equations, 10.1016/s0294-1449(97)89296-7
  14. del Pino Manuel, Felmer Patricio, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, 10.1007/s002080200327
  15. Fei Mingwen, Yin Huicheng, Existence and concentration of bound states of nonlinear Schrödinger equations with compactly supported and competing potentials, 10.2140/pjm.2010.244.261
  16. Floer Andreas, Weinstein Alan, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, 10.1016/0022-1236(86)90096-0
  17. Kwong M.-K.: Uniqueness of positive solutions of $${\Delta u - u + u^p = 0}$$ in $${\mathbb{R}^n}$$ . Arch. Ration. Mech. Anal. 105, 243–266 (1989)
  18. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984). Part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)
  19. Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems. In: Applied Mathematical Sciences, vol. 74. Springer, New York (1989)
  20. Moroz Vitaly, Van Schaftingen Jean, Existence and concentration for nonlinear Schrödinger equations with fast decaying potentials, 10.1016/j.crma.2009.05.009
  21. Moroz Vitaly, Van Schaftingen Jean, Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, 10.1007/s00526-009-0249-y
  22. Oh Yong-Geun, Existence of Semiclassical Bound States of Nonlinear Schrödinger Equations with Potentials of the Class (V)a, 10.1080/03605308808820585
  23. Yong-Geun Oh, Correction to existence of semiclassical bound states of nonlinear scierodinger equations with potentials of the, class (V)a, 10.1080/03605308908820631
  24. Oh Yong-Geun, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, 10.1007/bf02161413
  25. Rabinowitz Paul H., On a class of nonlinear Schr�dinger equations, 10.1007/bf00946631
  26. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston, MA (1996)
  27. Wang Xuefeng, On concentration of positive bound states of nonlinear Schrödinger equations, 10.1007/bf02096642
  28. Yin Huicheng, Zhang Pingzheng, Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity, 10.1016/j.jde.2009.03.002
Bibliographic reference Di Cosmo, J. ; Van Schaftingen, Jean. Stationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maxima. In: Calculus of Variations and Partial Differential Equations, Vol. 47, no.1-2, p. 243-271 (2013)
Permanent URL http://hdl.handle.net/2078.1/131965