User menu

Micrometric segregation of fluorescent membrane lipids: relevance for endogenous lipids and biogenesis in erythrocytes.

Bibliographic reference D'Auria, Ludovic ; Fenaux, Marisa ; Aleksandrowicz, Paulina ; Van Der Smissen, Patrick ; Chantrain, Christophe ; et. al. Micrometric segregation of fluorescent membrane lipids: relevance for endogenous lipids and biogenesis in erythrocytes.. In: Journal of Lipid Research, Vol. 54, no.4, p. 1066-76 (2013)
Permanent URL
  1. Goñi Félix M., Alonso Alicia, Effects of ceramide and other simple sphingolipids on membrane lateral structure, 10.1016/j.bbamem.2008.09.002
  2. Singer S. J., Nicolson G. L., The Fluid Mosaic Model of the Structure of Cell Membranes, 10.1126/science.175.4023.720
  3. Busto Jon V., Sot Jesús, Requejo-Isidro José, Goñi Félix M., Alonso Alicia, Cholesterol Displaces Palmitoylceramide from Its Tight Packing with Palmitoylsphingomyelin in the Absence of a Liquid-Disordered Phase, 10.1016/j.bpj.2010.05.032
  4. Kusumi Akihiro, Suzuki Kenichi G.N., Kasai Rinshi S., Ritchie Ken, Fujiwara Takahiro K., Hierarchical mesoscale domain organization of the plasma membrane, 10.1016/j.tibs.2011.08.001
  5. Yechiel E., Micrometer-scale domains in fibroblast plasma membranes, 10.1083/jcb.105.2.755
  6. Fujiwara Takahiro, Ritchie Ken, Murakoshi Hideji, Jacobson Ken, Kusumi Akihiro, Phospholipids undergo hop diffusion in compartmentalized cell membrane, 10.1083/jcb.200202050
  7. Singh Raman Deep, Liu Yidong, Wheatley Christine L., Holicky Eileen L., Makino Asami, Marks David L., Kobayashi Toshihide, Subramaniam Gopal, Bittman Robert, Pagano Richard E., Caveolar Endocytosis and Microdomain Association of a Glycosphingolipid Analog Is Dependent on Its Sphingosine Stereochemistry, 10.1074/jbc.m606194200
  8. Gousset Karine, Wolkers Willem F., Tsvetkova Nelly M., Oliver Ann E., Field Cara L., Walker Naomi J., Crowe John H., Tablin Fern, Evidence for a physiological role for membrane rafts in human platelets, 10.1002/jcp.10039
  9. Hao M., Mukherjee S., Maxfield F. R., Cholesterol depletion induces large scale domain segregation in living cell membranes, 10.1073/pnas.231377398
  10. Gaus K., Gratton E., Kable E. P. W., Jones A. S., Gelissen I., Kritharides L., Jessup W., Visualizing lipid structure and raft domains in living cells with two-photon microscopy, 10.1073/pnas.2534386100
  11. Tyteca D., D'Auria L., Der Smissen P. Van, Medts T., Carpentier S., Monbaliu J.C., de Diesbach P., Courtoy P.J., Three unrelated sphingomyelin analogs spontaneously cluster into plasma membrane micrometric domains, 10.1016/j.bbamem.2010.01.021
  12. Lingwood D., Simons K., Lipid Rafts As a Membrane-Organizing Principle, 10.1126/science.1174621
  13. D′auria Ludovic, Van Der Smissen Patrick, Bruyneel Frédéric, Courtoy Pierre J., Tyteca Donatienne, Segregation of Fluorescent Membrane Lipids into Distinct Micrometric Domains: Evidence for Phase Compartmentation of Natural Lipids?, 10.1371/journal.pone.0017021
  14. Grossmann Guido, Malinsky Jan, Stahlschmidt Wiebke, Loibl Martin, Weig-Meckl Ina, Frommer Wolf B., Opekarová Miroslava, Tanner Widmar, Plasma membrane microdomains regulate turnover of transport proteins in yeast, 10.1083/jcb.200806035
  15. Klose Christian, Ejsing Christer S., García-Sáez Ana J., Kaiser Hermann-Josef, Sampaio Julio L., Surma Michal A., Shevchenko Andrej, Schwille Petra, Simons Kai, Yeast Lipids Can Phase-separate into Micrometer-scale Membrane Domains, 10.1074/jbc.m110.123554
  16. Kusumi Akihiro, Fujiwara Takahiro K., Chadda Rahul, Xie Min, Tsunoyama Taka A., Kalay Ziya, Kasai Rinshi S., Suzuki Kenichi G.N., Dynamic Organizing Principles of the Plasma Membrane that Regulate Signal Transduction: Commemorating the Fortieth Anniversary of Singer and Nicolson's Fluid-Mosaic Model, 10.1146/annurev-cellbio-100809-151736
  17. van Meer Gerrit, Voelker Dennis R., Feigenson Gerald W., Membrane lipids: where they are and how they behave, 10.1038/nrm2330
  18. Ramstedt Bodil, Slotte J.Peter, Membrane properties of sphingomyelins, 10.1016/s0014-5793(02)03406-3
  19. Edidin Michael, The State of Lipid Rafts: From Model Membranes to Cells, 10.1146/annurev.biophys.32.110601.142439
  20. Bali Rachna, Savino Laura, Ramirez Diego A., Tsvetkova Nelly M., Bagatolli Luis, Tablin Fern, Crowe John H., Leidy Chad, Macroscopic domain formation during cooling in the platelet plasma membrane: An issue of low cholesterol content, 10.1016/j.bbamem.2009.03.017
  21. Sun M., Northup N., Marga F., Huber T., Byfield F. J., Levitan I., Forgacs G., The effect of cellular cholesterol on membrane-cytoskeleton adhesion, 10.1242/jcs.001370
  22. Salomao M., Zhang X., Yang Y., Lee S., Hartwig J. H., Chasis J. A., Mohandas N., An X., Protein 4.1R-dependent multiprotein complex: New insights into the structural organization of the red blood cell membrane, 10.1073/pnas.0803225105
  23. Baines Anthony J., The spectrin–ankyrin–4.1–adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life, 10.1007/s00709-010-0181-1
  24. Lingwood D., Ries J., Schwille P., Simons K., Plasma membranes are poised for activation of raft phase coalescence at physiological temperature, 10.1073/pnas.0804374105
  25. Sheetz Michael P., Sable Julia E., Döbereiner Hans-Günther, CONTINUOUS MEMBRANE-CYTOSKELETON ADHESION REQUIRES CONTINUOUS ACCOMMODATION TO LIPID AND CYTOSKELETON DYNAMICS, 10.1146/annurev.biophys.35.040405.102017
  26. Zachowski A, Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement, 10.1042/bj2940001
  27. Svoboda K., Schmidt C.F., Branton D., Block S.M., Conformation and elasticity of the isolated red blood cell membrane skeleton, 10.1016/s0006-3495(92)81644-2
  28. Bennett Vann, Healy Jane, Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin, 10.1016/j.molmed.2007.11.005
  30. Marinetti G.V., Baumgarten R., Sheeley D., Gordesky S., Cross-linking of phospholipids to proteins in the erythrocyte membrane, 10.1016/0006-291x(73)91434-4
  31. Prausnitz M.R., Lau B.S., Milano C.D., Conner S., Langer R., Weaver J.C., A quantitative study of electroporation showing a plateau in net molecular transport, 10.1016/s0006-3495(93)81081-6
  32. Cheng Z.-J., Distinct Mechanisms of Clathrin-independent Endocytosis Have Unique Sphingolipid Requirements, 10.1091/mbc.e05-12-1101
  33. Marsh, J. Lipid Res., 7, 574 (1966)
  34. Pike Linda J., Rafts defined: a report on the Keystone symposium on lipid rafts and cell function, 10.1194/jlr.e600002-jlr200
  35. Mikhalyov Ilya, Samsonov Andrey, Lipid raft detecting in membranes of live erythrocytes, 10.1016/j.bbamem.2011.04.002
  36. Byfield Fitzroy J., Aranda-Espinoza Helim, Romanenko Victor G., Rothblat George H., Levitan Irena, Cholesterol Depletion Increases Membrane Stiffness of Aortic Endothelial Cells, 10.1529/biophysj.104.040634
  37. Ferru E., Giger K., Pantaleo A., Campanella E., Grey J., Ritchie K., Vono R., Turrini F., Low P. S., Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3, 10.1182/blood-2010-11-317024
  38. Betz T., Lenz M., Joanny J.-F., Sykes C., ATP-dependent mechanics of red blood cells, 10.1073/pnas.0904614106
  39. Manno Sumie, Takakuwa Yuichi, Mohandas Narla, Modulation of Erythrocyte Membrane Mechanical Function by Protein 4.1 Phosphorylation, 10.1074/jbc.m410650200
  40. Gallagher Patrick G., Hematologically important mutations: Ankyrin variants in hereditary spherocytosis, 10.1016/j.bcmd.2005.08.008
  41. Ipsaro J. J., Huang L., Mondragon A., Structures of the spectrin-ankyrin interaction binding domains, 10.1182/blood-2008-10-184358
  42. Dahl K. N., Fractional attachment of CD47 (IAP) to the erythrocyte cytoskeleton and visual colocalization with Rh protein complexes, 10.1182/blood-2002-04-1187
  43. KING M.-J., JEPSON M. A., GUEST A., MUSHENS R., Detection of hereditary pyropoikilocytosis by the eosin-5-maleimide (EMA)-binding test is attributable to a marked reduction in EMA-reactive transmembrane proteins : Greater Membrane Protein Loss from HPP Red Cells than HS, 10.1111/j.1751-553x.2010.01270.x
  44. Ziółkowska Natasza E., Christiano Romain, Walther Tobias C., Organized living: formation mechanisms and functions of plasma membrane domains in yeast, 10.1016/j.tcb.2011.12.002
  45. Fujita A., Cheng J., Hirakawa M., Furukawa K., Kusunoki S., Fujimoto T., Gangliosides GM1 and GM3 in the Living Cell Membrane Form Clusters Susceptible to Cholesterol Depletion and Chilling, 10.1091/mbc.e07-01-0071
  46. Kuerschner Lars, Ejsing Christer S, Ekroos Kim, Shevchenko Andrej, Anderson Kurt I, Thiele Christoph, Polyene-lipids: A new tool to image lipids, 10.1038/nmeth728
  47. Fidorra Matthias, Heimburg Thomas, Bagatolli Luis A., Direct Visualization of the Lateral Structure of Porcine Brain Cerebrosides/POPC Mixtures in Presence and Absence of Cholesterol, 10.1016/j.bpj.2009.03.060
  48. Malinska K., Visualization of Protein Compartmentation within the Plasma Membrane of Living Yeast Cells, 10.1091/mbc.e03-04-0221
  49. Malinsky Jan, Opekarová Miroslava, Tanner Widmar, The lateral compartmentation of the yeast plasma membrane, 10.1002/yea.1772
  50. Reed C F, Swisher S N, Erythrocyte lipid loss in hereditary spherocytosis., 10.1172/jci105392
  51. Klappauf E., Schubert D., Band 3-protein from human erythrocyte membranes strongly interacts with cholesterol, 10.1016/0014-5793(77)80490-0
  52. Schubert Dieter, Boss Karin, Band 3 protein-cholesterol interactions in erythrocyte membranes : Possible role in anion transport and dependency on membrane phospholipid, 10.1016/0014-5793(82)81295-7
  53. Diakowski Witold, Ozimek Łukasz, Bielska Ewa, Bem Sylwia, Langner Marek, Sikorski Aleksander F., Cholesterol affects spectrin–phospholipid interactions in a manner different from changes resulting from alterations in membrane fluidity due to fatty acyl chain composition, 10.1016/j.bbamem.2005.11.009
  54. Kwik J., Boyle S., Fooksman D., Margolis L., Sheetz M. P., Edidin M., Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin, 10.1073/pnas.2336102100
  55. Pike Linda J., Miller Joanne M., Cholesterol Depletion Delocalizes Phosphatidylinositol Bisphosphate and Inhibits Hormone-stimulated Phosphatidylinositol Turnover, 10.1074/jbc.273.35.22298
  56. Mizuno Hideaki, Abe Mitsuhiro, Dedecker Peter, Makino Asami, Rocha Susana, Ohno-Iwashita Yoshiko, Hofkens Johan, Kobayashi Toshihide, Miyawaki Atsushi, Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane, 10.1039/c1sc00169h
  57. An Xiuli, Zhang Xihui, Debnath Gargi, Baines Anthony J., Mohandas Narla, Phosphatidylinositol-4,5-Biphosphate (PIP2) Differentially Regulates the Interaction of Human Erythrocyte Protein 4.1 (4.1R) with Membrane Proteins†, 10.1021/bi060015v
  58. Sinha Bidisha, Köster Darius, Ruez Richard, Gonnord Pauline, Bastiani Michele, Abankwa Daniel, Stan Radu V., Butler-Browne Gillian, Vedie Benoit, Johannes Ludger, Morone Nobuhiro, Parton Robert G., Raposo Graça, Sens Pierre, Lamaze Christophe, Nassoy Pierre, Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae, 10.1016/j.cell.2010.12.031
  59. Gauthier Nils C., Masters Thomas A., Sheetz Michael P., Mechanical feedback between membrane tension and dynamics, 10.1016/j.tcb.2012.07.005
  60. Muralidharan-Chari V., Clancy J. W., Sedgwick A., D'Souza-Schorey C., Microvesicles: mediators of extracellular communication during cancer progression, 10.1242/jcs.064386
  61. Bagatolli Luis A., Ipsen John H., Simonsen Adam C., Mouritsen Ole G., An outlook on organization of lipids in membranes: Searching for a realistic connection with the organization of biological membranes, 10.1016/j.plipres.2010.05.001
  62. Kahya Nicoletta, Scherfeld Dag, Bacia Kirsten, Poolman Bert, Schwille Petra, Probing Lipid Mobility of Raft-exhibiting Model Membranes by Fluorescence Correlation Spectroscopy, 10.1074/jbc.m302969200
  63. Baumgart Tobias, Hess Samuel T., Webb Watt W., Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, 10.1038/nature02013