User menu

A root chicory MADS-box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and devernalization responses

Bibliographic reference Perilleux, Claire ; Pieltain, Alexandra ; Jacquemin, Guillaume ; Bouché, Frédéric ; Detry, Nathalie ; et. al. A root chicory MADS-box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and devernalization responses. In: The Plant Journal, Vol. 75, no. n, p. 390-402 (2013)
Permanent URL
  1. Aikawa S., Kobayashi M. J., Satake A., Shimizu K. K., Kudoh H., Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment, 10.1073/pnas.0914293107
  2. Alexandre C. M., Hennig L., FLC or not FLC: the other side of vernalization, 10.1093/jxb/ern070
  3. Altschul S., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, 10.1093/nar/25.17.3389
  4. Angel Andrew, Song Jie, Dean Caroline, Howard Martin, A Polycomb-based switch underlying quantitative epigenetic memory, 10.1038/nature10241
  5. Becker A, The major clades of MADS-box genes and their role in the development and evolution of flowering plants, 10.1016/s1055-7903(03)00207-0
  6. Bernier, The Physiology of Flowering, 1 (1981)
  7. Chouard P, Vernalization and its Relations to Dormancy, 10.1146/annurev.pp.11.060160.001203
  8. Clough Steven J., Bent Andrew F., Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana : Floral dip transformation of Arabidopsis, 10.1046/j.1365-313x.1998.00343.x
  9. Crooks G. E., WebLogo: A Sequence Logo Generator, 10.1101/gr.849004
  10. D’Aloia Maria, Tocquin Pierre, Périlleux Claire, Vernalization-induced repression of FLOWERING LOCUS C stimulates flowering in Sinapis alba and enhances plant responsiveness to photoperiod, 10.1111/j.1469-8137.2008.02404.x
  11. Demeulemeester M. A. C., De Proft M. P., In vivo and in vitro flowering response of chicory ( Cichorium intybus L.): influence of plant age and vernalization, 10.1007/s002990050661
  12. Dennis Elizabeth S, Peacock W James, Vernalization in cereals, 10.1186/jbiol156
  13. Dielen Vincent, Notté Christine, Lutts Stanley, Debavelaere Vianney, Van Herck Jean-Claude, Kinet Jean-Marie, Bolting control by low temperatures in root chicory (Cichorium intybus var. sativum), 10.1016/j.fcr.2004.11.005
  14. Felsenstein Joseph, Confidence Limits on Phylogenies: An Approach Using the Bootstrap, 10.2307/2408678
  15. Finnegan E. Jean, Dennis Elizabeth S., Vernalization-Induced Trimethylation of Histone H3 Lysine 27 at FLC Is Not Maintained in Mitotically Quiescent Cells, 10.1016/j.cub.2007.10.026
  16. Gazzani S., Analysis of the Molecular Basis of Flowering Time Variation in Arabidopsis Accessions, 10.1104/pp.103.021212
  17. Gendall Anthony R., Levy Yaron Y., Wilson Allison, Dean Caroline, The VERNALIZATION 2 Gene Mediates the Epigenetic Regulation of Vernalization in Arabidopsis, 10.1016/s0092-8674(01)00573-6
  18. Gianquinto G., Morphological and physiological aspects of phase transition in radicchio (Cichorium intybus L. var. silvestre Bisch.): influence of daylength and its interaction with low temperature, 10.1016/s0304-4238(97)00058-7
  19. Gianquinto, Adv. Hortic. Sci., 9, 192 (1995)
  20. Gouy M., Guindon S., Gascuel O., SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building, 10.1093/molbev/msp259
  21. Guindon Stéphane, Gascuel Olivier, Rannala Bruce, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, 10.1080/10635150390235520
  22. Guo Y.-L., Todesco M., Hagmann J., Das S., Weigel D., Independent FLC Mutations as Causes of Flowering-Time Variation in Arabidopsis thaliana and Capsella rubella, 10.1534/genetics.112.143958
  23. Hajdukiewicz Peter, Svab Zora, Maliga Pal, The small, versatilepPZP family ofAgrobacterium binary vectors for plant transformation, 10.1007/bf00014672
  24. Helliwell Chris A., Wood Craig C., Robertson Masumi, James Peacock W., Dennis Elizabeth S., The Arabidopsis FLC protein interacts directlyin vivowithSOC1andFTchromatin and is part of a high-molecular-weight protein complex, 10.1111/j.1365-313x.2006.02686.x
  25. Ietswaart Robert, Wu Zhe, Dean Caroline, Flowering time control: another window to the connection between antisense RNA and chromatin, 10.1016/j.tig.2012.06.002
  26. Johanson U., Molecular Analysis of FRIGIDA, a Major Determinant of Natural Variation in Arabidopsis Flowering Time, 10.1126/science.290.5490.344
  27. Joseph C., Billot J., Soudain P., Come D., The effect of cold, anoxia and ethylene on the flowering ability of buds of Cichorium intybus, 10.1111/j.1399-3054.1985.tb02373.x
  28. Kaufmann Kerstin, Melzer Rainer, Theißen Günter, MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants, 10.1016/j.gene.2004.12.014
  29. Lanave Cecilia, Preparata Giuliano, Sacone Cecilia, Serio Gabriella, A new method for calculating evolutionary substitution rates, 10.1007/bf02101990
  30. Le S. Q., Gascuel O., An Improved General Amino Acid Replacement Matrix, 10.1093/molbev/msn067
  31. Lee I., Amasino R. M., Effect of Vernalization, Photoperiod, and Light Quality on the Flowering Phenotype of Arabidopsis Plants Containing the FRIGIDA Gene, 10.1104/pp.108.1.157
  32. Lin S.-I, Differential Regulation of FLOWERING LOCUS C Expression by Vernalization in Cabbage and Arabidopsis, 10.1104/pp.104.058974
  33. Liu J., siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis, 10.1101/gad.1217304
  34. Locascio A., Lucchin M., Varotto S., Characterization of aMADS FLOWERING LOCUS C-LIKE(MFL) sequence inCichorium intybus: a comparative study ofCiMFLandAtFLCreveals homologies and divergences in gene function, 10.1111/j.1469-8137.2009.02791.x
  35. Michaels S. D., FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering, 10.1105/tpc.11.5.949
  36. Michaels S. D., Loss of FLOWERING LOCUS C Activity Eliminates the Late-Flowering Phenotype of FRIGIDA and Autonomous Pathway Mutations but Not Responsiveness to Vernalization, 10.1105/tpc.13.4.935
  37. Michaels S. D., He Y., Scortecci K. C., Amasino R. M., Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis, 10.1073/pnas.1531467100
  38. Napp-Zinn Klaus, Untersuchungen über das Vernalisationsverhalten einer winterannuellen Rasse von Arabidopsis thaliana, 10.1007/bf01930342
  39. Paulet, Handbook of Flowering, 265 (1985)
  41. Pin Pierre A., Zhang Wenying, Vogt Sebastian H., Dally Nadine, Büttner Bianca, Schulze-Buxloh Gretel, Jelly Noémie S., Chia Tansy Y.P., Mutasa-Göttgens Effie S., Dohm Juliane C., Himmelbauer Heinz, Weisshaar Bernd, Kraus Josef, Gielen Jan J.L., Lommel Murielle, Weyens Guy, Wahl Bettina, Schechert Axel, Nilsson Ove, Jung Christian, Kraft Thomas, Müller Andreas E., The Role of a Pseudo-Response Regulator Gene in Life Cycle Adaptation and Domestication of Beet, 10.1016/j.cub.2012.04.007
  42. Ratcliffe O. J., Regulation of Flowering in Arabidopsis by an FLC Homologue, 10.1104/pp.126.1.122
  43. Reeves Patrick A., He Yuehui, Schmitz Robert J., Amasino Richard M., Panella Lee W., Richards Christopher M., Evolutionary Conservation of the FLOWERING LOCUS C -Mediated Vernalization Response: Evidence From the Sugar Beet ( Beta vulgaris ) , 10.1534/genetics.106.069336
  44. Schranz, Genetics, 162, 1457 (2002)
  45. Searle I., The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis, 10.1101/gad.373506
  46. Sheldon C. C., The FLF MADS Box Gene: A Repressor of Flowering in Arabidopsis Regulated by Vernalization and Methylation, 10.1105/tpc.11.3.445
  47. Sheldon C. C., Rouse D. T., Finnegan E. J., Peacock W. J., Dennis E. S., The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC), 10.1073/pnas.97.7.3753
  48. Sheldon C. C., Different Regulatory Regions Are Required for the Vernalization-Induced Repression of FLOWERING LOCUS C and for the Epigenetic Maintenance of Repression, 10.1105/tpc.004564
  49. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Soding J., Thompson J. D., Higgins D. G., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, 10.1038/msb.2011.75
  50. Turck Franziska, Fornara Fabio, Coupland George, Regulation and Identity of Florigen: FLOWERING LOCUS T Moves Center Stage, 10.1146/annurev.arplant.59.032607.092755
  51. Van Cutsem P., du Jardin P., Boutte C., Beauwens T., Jacqmin S., Vekemans X., Distinction between cultivated and wild chicory gene pools using AFLP markers, 10.1007/s00122-003-1296-y
  52. Vandesompele Jo, De Preter Katleen, Pattyn Filip, Poppe Bruce, Van Roy Nadine, De Paepe Anne, Speleman Frank, 10.1186/gb-2002-3-7-research0034
  53. Vergara, Int. Rice Res. Notes, 32, 35 (2008)
  54. Wang Renhou, Farrona Sara, Vincent Coral, Joecker Anika, Schoof Heiko, Turck Franziska, Alonso-Blanco Carlos, Coupland George, Albani Maria C., PEP1 regulates perennial flowering in Arabis alpina, 10.1038/nature07988
  55. Yang, Mol. Biol. Evol., 10, 1396 (1993)