User menu

Flow motifs reveal limitations of the static framework to represent human interactions

Bibliographic reference Correa Da Rocha, Luis Enrique ; Blondel, Vincent. Flow motifs reveal limitations of the static framework to represent human interactions. In: Physical Review, Vol. 87, no. 4, p. 042814-1 (9 pages) (April 2013)
Permanent URL http://hdl.handle.net/2078.1/128468
  1. M. Newman, Networks: An Introduction (2010)
  2. Costa Luciano da Fontoura, Oliveira Osvaldo N., Travieso Gonzalo, Rodrigues Francisco Aparecido, Villas Boas Paulino Ribeiro, Antiqueira Lucas, Viana Matheus Palhares, Correa Rocha Luis Enrique, Analyzing and modeling real-world phenomena with complex networks: a survey of applications, 10.1080/00018732.2011.572452
  3. Holme P, Network dynamics of ongoing social relationships, 10.1209/epl/i2003-00505-4
  4. Isella Lorenzo, Stehlé Juliette, Barrat Alain, Cattuto Ciro, Pinton Jean-François, Van den Broeck Wouter, What's in a crowd? Analysis of face-to-face behavioral networks, 10.1016/j.jtbi.2010.11.033
  5. Barabási Albert-László, The origin of bursts and heavy tails in human dynamics, 10.1038/nature03459
  6. Rocha L. E. C., Liljeros F., Holme P., Information dynamics shape the sexual networks of Internet-mediated prostitution, 10.1073/pnas.0914080107
  7. Kovanen Lauri, Karsai Márton, Kaski Kimmo, Kertész János, Saramäki Jari, Temporal motifs in time-dependent networks, 10.1088/1742-5468/2011/11/p11005
  8. Lentz Hartmut H. K., Selhorst Thomas, Sokolov Igor M., Unfolding Accessibility Provides a Macroscopic Approach to Temporal Networks, 10.1103/physrevlett.110.118701
  9. Rybski D., Buldyrev S. V., Havlin S., Liljeros F., Makse H. A., Scaling laws of human interaction activity, 10.1073/pnas.0902667106
  10. Tang J., Scellato S., Musolesi M., Mascolo C., Latora V., Small-world behavior in time-varying graphs, 10.1103/physreve.81.055101
  11. Pan Raj Kumar, Saramäki Jari, Path lengths, correlations, and centrality in temporal networks, 10.1103/physreve.84.016105
  12. Grindrod Peter, Parsons Mark C., Higham Desmond J., Estrada Ernesto, Communicability across evolving networks, 10.1103/physreve.83.046120
  13. Takaguchi Taro, Sato Nobuo, Yano Kazuo, Masuda Naoki, Importance of individual events in temporal networks, 10.1088/1367-2630/14/9/093003
  14. Konschake Mario, Lentz Hartmut H. K., Conraths Franz J., Hövel Philipp, Selhorst Thomas, On the Robustness of In- and Out-Components in a Temporal Network, 10.1371/journal.pone.0055223
  15. Rocha Luis E. C., Blondel Vincent D., Bursts of Vertex Activation and Epidemics in Evolving Networks, 10.1371/journal.pcbi.1002974
  16. Rocha Luis E. C., Liljeros Fredrik, Holme Petter, Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts, 10.1371/journal.pcbi.1001109
  17. Stehlé Juliette, Voirin Nicolas, Barrat Alain, Cattuto Ciro, Colizza Vittoria, Isella Lorenzo, Régis Corinne, Pinton Jean-François, Khanafer Nagham, Van den Broeck Wouter, Vanhems Philippe, Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees, 10.1186/1741-7015-9-87
  18. Miritello Giovanna, Moro Esteban, Lara Rubén, Dynamical strength of social ties in information spreading, 10.1103/physreve.83.045102
  19. Karsai M., Kivelä M., Pan R. K., Kaski K., Kertész J., Barabási A.-L., Saramäki J., Small but slow world: How network topology and burstiness slow down spreading, 10.1103/physreve.83.025102
  20. Starnini Michele, Baronchelli Andrea, Barrat Alain, Pastor-Satorras Romualdo, Random walks on temporal networks, 10.1103/physreve.85.056115
  21. Haerter Jan O., Jamtveit Bjørn, Mathiesen Joachim, Communication Dynamics in Finite Capacity Social Networks, 10.1103/physrevlett.109.168701
  22. Perra Nicola, Baronchelli Andrea, Mocanu Delia, Gonçalves Bruno, Pastor-Satorras Romualdo, Vespignani Alessandro, Random Walks and Search in Time-Varying Networks, 10.1103/physrevlett.109.238701
  23. Takaguchi Taro, Masuda Naoki, Voter model with non-Poissonian interevent intervals, 10.1103/physreve.84.036115
  24. Rosvall M., Bergstrom C. T., Maps of random walks on complex networks reveal community structure, 10.1073/pnas.0706851105
  25. Kim Youngdo, Son Seung-Woo, Jeong Hawoong, Finding communities in directed networks, 10.1103/physreve.81.016103
  26. Lambiotte R., Sinatra R., Delvenne J.-C., Evans T. S., Barahona M., Latora V., Flow graphs: Interweaving dynamics and structure, 10.1103/physreve.84.017102
  27. Milo R., Network Motifs: Simple Building Blocks of Complex Networks, 10.1126/science.298.5594.824
  28. Milo R., Superfamilies of Evolved and Designed Networks, 10.1126/science.1089167
  29. U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits (2006)
  30. Knabe Johannes F., Nehaniv Chrystopher L., Schilstra Maria J., Do motifs reflect evolved function?—No convergent evolution of genetic regulatory network subgraph topologies, 10.1016/j.biosystems.2008.05.012
  31. Villas Boas Paulino R., Rodrigues Francisco A., Travieso Gonzalo, da Fontoura Costa Luciano, Chain motifs: The tails and handles of complex networks, 10.1103/physreve.77.026106
  32. Sinatra Roberta, Condorelli Daniele, Latora Vito, Networks of Motifs from Sequences of Symbols, 10.1103/physrevlett.105.178702
  33. Holme Petter, Edling Christofer R., Liljeros Fredrik, Structure and time evolution of an Internet dating community, 10.1016/j.socnet.2004.01.007
  34. Eckmann J.-P., Moses E., Sergi D., Entropy of dialogues creates coherent structures in e-mail traffic, 10.1073/pnas.0405728101
  35. Lambiotte R., Rosvall M., Ranking and clustering of nodes in networks with smart teleportation, 10.1103/physreve.85.056107
  36. Wernicke S., Rasche F., FANMOD: a tool for fast network motif detection, 10.1093/bioinformatics/btl038
  37. Costa L. da F., da Rocha L. E.C., A generalized approach to complex networks, 10.1140/epjb/e2006-00107-0