User menu

Bayesian P-spline estimation in hierarchical models specified by systems of affine differential equations

Bibliographic reference Jaeger, Jonathan ; Lambert, Philippe. Bayesian P-spline estimation in hierarchical models specified by systems of affine differential equations. In: Statistical Modelling : an international journal, Vol. 13, no.1, p. 3-40 (2013)
Permanent URL http://hdl.handle.net/2078.1/128370
  1. Biegler L. T., Damiano J. J., Blau G. E., Nonlinear parameter estimation: A case study comparison, 10.1002/aic.690320105
  2. Bonate Peter L., Pharmacokinetic-Pharmacodynamic Modeling and Simulation, ISBN:9781441994844, 10.1007/978-1-4419-9485-1
  3. de Boor C, A Practical guide to splines (2001)
  4. Cai Bo, Meyer Renate, Perron François, Metropolis–Hastings algorithms with adaptive proposals, 10.1007/s11222-008-9051-5
  5. Campbell D, Bayesian collocation tempering and generalized profiling for estimation of parameters from differential equation models (2007)
  6. Cao J., Zhao H., Estimating dynamic models for gene regulation networks, 10.1093/bioinformatics/btn246
  7. Eilers Paul H. C., Marx Brian D., Flexible smoothing with B -splines and penalties, 10.1214/ss/1038425655
  8. Jullion Astrid, Lambert Philippe, Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models, 10.1016/j.csda.2006.09.027
  9. Kwan K. C., Breault G. O., Umbenhauer E. R., McMahon F. G., Duggan D. E., Kinetics of indomethacin absorption, elimination, and enterohepatic circulation in man, 10.1007/bf01063617
  10. Lambert Philippe, Archimedean copula estimation using Bayesian splines smoothing techniques, 10.1016/j.csda.2007.01.018
  11. Lang Stefan, Brezger Andreas, Bayesian P-Splines, 10.1198/1061860043010
  12. Lunn David J., Best Nicky, Thomas Andrew, Wakefield Jon, Spiegelhalter David, 10.1023/a:1020206907668
  13. Poyton A.A., Varziri M.S., McAuley K.B., McLellan P.J., Ramsay J.O., Parameter estimation in continuous-time dynamic models using principal differential analysis, 10.1016/j.compchemeng.2005.11.008
  14. Ramsay J. O., Hooker G., Campbell D., Cao J., Parameter estimation for differential equations: a generalized smoothing approach : Parameter Estimation for Differential Equations, 10.1111/j.1467-9868.2007.00610.x
  15. Ramsay James, Functional Data Analysis, 10.1002/0470013192.bsa239
  16. Spiegelhalter David J., Best Nicola G., Carlin Bradley P., van der Linde Angelika, Bayesian measures of model complexity and fit, 10.1111/1467-9868.00353
  17. Varah J. M., A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations, 10.1137/0903003
  18. van Weel V., Toes R.E.M., Seghers L., Deckers M.M.L., de Vries M.R., Eilers P.H., Sipkens J., Schepers A., Eefting D., van Hinsbergh V.W.M., van Bockel J.H., Quax P.H.A., Natural Killer Cells and CD4+ T-Cells Modulate Collateral Artery Development, 10.1161/atvbaha.107.151407
  19. Ye Jianming, On Measuring and Correcting the Effects of Data Mining and Model Selection, 10.1080/01621459.1998.10474094