Casas, José Manuel
[Universidad de Vigo]
Van der Linden, Tim
[UCL]
Basing ourselves on Janelidze and Kelly’s general notion of central exten- sion, we study universal central extensions in the context of semi-abelian categories. We consider a new fundamental condition on composition of central extensions and give examples of categories which do, or do not, satisfy this condition.
- Arias D., Casas J.M., Ladra M., On universal central extensions of precrossed and crossed modules, 10.1016/j.jpaa.2006.09.005
- Arias, D., Ladra, M., R.-Grandjeán, A.: Homology of precrossed modules. Ill. J. Math. 46(3), 739–754 (2002)
- Arias D., Ladra M., R.-Grandjeán A., Universal central extensions of precrossed modules and Milnor's relative K2, 10.1016/s0022-4049(03)00065-3
- Borceux Francis, Bourn Dominique, Mal’cev, Protomodular, Homological and Semi-Abelian Categories, ISBN:9789048165513, 10.1007/978-1-4020-1962-3
- Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Category Theory, Proceedings Como 1990. Lecture Notes in Math., vol. 1488, pp. 43–62. Springer (1991)
- Bourn Dominique, 3×3 Lemma and Protomodularity, 10.1006/jabr.2000.8526
- Bourn Dominique, Gran Marino, Central extensions in semi-abelian categories, 10.1016/s0022-4049(02)00127-5
- Carrasco P., Cegarra A.M., Grandjeán A.R.-, (Co)Homology of crossed modules, 10.1016/s0022-4049(01)00094-9
- Casas, J.M., Insua, M.A., Pachego Rego, N.: On universal central extensions of Hom-Leibniz algebras. arXiv: 1209.6266 (2012, preprint)
- Cheng, Y.S., Su, Y.C.: (Co)homology and universal central extensions of Hom-Leibniz algebras. Acta Math. Sin., Engl. Ser. 27(5), 813–830 (2011)
- Everaert Tomas, Higher central extensions and Hopf formulae, 10.1016/j.jalgebra.2008.12.015
- Grandis Marco, Preface, 10.1023/b:apcs.0000013953.15330.92
- Everaert, T., Van der Linden, T.: Baer invariants in semi-abelian categoriesII: homology. Theory Appl. Categ. 12(4), 195–224 (2004)
- Gnedbaye, A.V.: Third homology groups of universal central extensions of a Lie algebra. Afr. Math. (Série 3) 10, 46–63 (1999)
- Gran Marino, Van der Linden Tim, On the second cohomology group in semi-abelian categories, 10.1016/j.jpaa.2007.06.009
- Gray, J.R.A., Van der Linden, T.: Peri-abelian categories and the universal central extension condition (2013, in preparation)
- Higgins P. J., Groups with Multiple Operators, 10.1112/plms/s3-6.3.366
- Janelidze George, Galois Groups, Abstract Commutators, and Hopf Formula, 10.1007/s10485-007-9107-2
- Janelidze G., Kelly G.M., Galois theory and a general notion of central extension, 10.1016/0022-4049(94)90057-4
- Janelidze George, Márki László, Tholen Walter, Semi-abelian categories, 10.1016/s0022-4049(01)00103-7
- Loday Jean-Louis, Pirashvili Teimuraz, Universal enveloping algebras of Leibniz algebras and (co)homology, 10.1007/bf01445099
- Makhlouf Abdenacer, Silvestrov Sergei D., Hom-algebra structures, 10.4303/jglta/s070206
- Milnor John, Introduction to Algebraic K-Theory. (AM-72), ISBN:9781400881796, 10.1515/9781400881796
- Weibel, Ch. A.: An introduction to homological algebra. Camb. Stud. Adv. Math., vol. 38. Cambridge Univ. Press (1997)
Bibliographic reference |
Casas, José Manuel ; Van der Linden, Tim. Universal central extensions in semi-abelian categories. In: Applied Categorical Structures : a journal devoted to applications of categorical methods in algebra, analysis, order, topology and computer science, Vol. 22, p. 253–268 (2014) |
Permanent URL |
http://hdl.handle.net/2078.1/128238 |