User menu

Universal central extensions in semi-abelian categories

  • Open access
  • PDF
  • 427.51 K
  1. Arias D., Casas J.M., Ladra M., On universal central extensions of precrossed and crossed modules, 10.1016/j.jpaa.2006.09.005
  2. Arias, D., Ladra, M., R.-Grandjeán, A.: Homology of precrossed modules. Ill. J. Math. 46(3), 739–754 (2002)
  3. Arias D., Ladra M., R.-Grandjeán A., Universal central extensions of precrossed modules and Milnor's relative K2, 10.1016/s0022-4049(03)00065-3
  4. Borceux Francis, Bourn Dominique, Mal’cev, Protomodular, Homological and Semi-Abelian Categories, ISBN:9789048165513, 10.1007/978-1-4020-1962-3
  5. Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Category Theory, Proceedings Como 1990. Lecture Notes in Math., vol. 1488, pp. 43–62. Springer (1991)
  6. Bourn Dominique, 3×3 Lemma and Protomodularity, 10.1006/jabr.2000.8526
  7. Bourn Dominique, Gran Marino, Central extensions in semi-abelian categories, 10.1016/s0022-4049(02)00127-5
  8. Carrasco P., Cegarra A.M., Grandjeán A.R.-, (Co)Homology of crossed modules, 10.1016/s0022-4049(01)00094-9
  9. Casas, J.M., Insua, M.A., Pachego Rego, N.: On universal central extensions of Hom-Leibniz algebras. arXiv: 1209.6266 (2012, preprint)
  10. Cheng, Y.S., Su, Y.C.: (Co)homology and universal central extensions of Hom-Leibniz algebras. Acta Math. Sin., Engl. Ser. 27(5), 813–830 (2011)
  11. Everaert Tomas, Higher central extensions and Hopf formulae, 10.1016/j.jalgebra.2008.12.015
  12. Grandis Marco, Preface, 10.1023/b:apcs.0000013953.15330.92
  13. Everaert, T., Van der Linden, T.: Baer invariants in semi-abelian categoriesII: homology. Theory Appl. Categ. 12(4), 195–224 (2004)
  14. Gnedbaye, A.V.: Third homology groups of universal central extensions of a Lie algebra. Afr. Math. (Série 3) 10, 46–63 (1999)
  15. Gran Marino, Van der Linden Tim, On the second cohomology group in semi-abelian categories, 10.1016/j.jpaa.2007.06.009
  16. Gray, J.R.A., Van der Linden, T.: Peri-abelian categories and the universal central extension condition (2013, in preparation)
  17. Higgins P. J., Groups with Multiple Operators, 10.1112/plms/s3-6.3.366
  18. Janelidze George, Galois Groups, Abstract Commutators, and Hopf Formula, 10.1007/s10485-007-9107-2
  19. Janelidze G., Kelly G.M., Galois theory and a general notion of central extension, 10.1016/0022-4049(94)90057-4
  20. Janelidze George, Márki László, Tholen Walter, Semi-abelian categories, 10.1016/s0022-4049(01)00103-7
  21. Loday Jean-Louis, Pirashvili Teimuraz, Universal enveloping algebras of Leibniz algebras and (co)homology, 10.1007/bf01445099
  22. Makhlouf Abdenacer, Silvestrov Sergei D., Hom-algebra structures, 10.4303/jglta/s070206
  23. Milnor John, Introduction to Algebraic K-Theory. (AM-72), ISBN:9781400881796, 10.1515/9781400881796
  24. Weibel, Ch. A.: An introduction to homological algebra. Camb. Stud. Adv. Math., vol. 38. Cambridge Univ. Press (1997)
Bibliographic reference Casas, José Manuel ; Van der Linden, Tim. Universal central extensions in semi-abelian categories. In: Applied Categorical Structures : a journal devoted to applications of categorical methods in algebra, analysis, order, topology and computer science, Vol. 22, p. 253–268 (2014)
Permanent URL