User menu

Universal central extensions in semi-abelian categories

Bibliographic reference Casas, José Manuel ; Van der Linden, Tim. Universal central extensions in semi-abelian categories. In: Applied Categorical Structures : a journal devoted to applications of categorical methods in algebra, analysis, order, topology and computer science, Vol. 22, p. 253–268 (2014)
Permanent URL
  1. Arias D., Casas J.M., Ladra M., On universal central extensions of precrossed and crossed modules, 10.1016/j.jpaa.2006.09.005
  2. Arias, D., Ladra, M., R.-Grandjeán, A.: Homology of precrossed modules. Ill. J. Math. 46(3), 739–754 (2002)
  3. Arias D., Ladra M., R.-Grandjeán A., Universal central extensions of precrossed modules and Milnor's relative K2, 10.1016/s0022-4049(03)00065-3
  4. Borceux Francis, Bourn Dominique, Mal’cev, Protomodular, Homological and Semi-Abelian Categories, ISBN:9789048165513, 10.1007/978-1-4020-1962-3
  5. Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Category Theory, Proceedings Como 1990. Lecture Notes in Math., vol. 1488, pp. 43–62. Springer (1991)
  6. Bourn Dominique, 3×3 Lemma and Protomodularity, 10.1006/jabr.2000.8526
  7. Bourn Dominique, Gran Marino, Central extensions in semi-abelian categories, 10.1016/s0022-4049(02)00127-5
  8. Carrasco P., Cegarra A.M., Grandjeán A.R.-, (Co)Homology of crossed modules, 10.1016/s0022-4049(01)00094-9
  9. Casas, J.M., Insua, M.A., Pachego Rego, N.: On universal central extensions of Hom-Leibniz algebras. arXiv: 1209.6266 (2012, preprint)
  10. Cheng, Y.S., Su, Y.C.: (Co)homology and universal central extensions of Hom-Leibniz algebras. Acta Math. Sin., Engl. Ser. 27(5), 813–830 (2011)
  11. Everaert Tomas, Higher central extensions and Hopf formulae, 10.1016/j.jalgebra.2008.12.015
  12. Grandis Marco, Preface, 10.1023/b:apcs.0000013953.15330.92
  13. Everaert, T., Van der Linden, T.: Baer invariants in semi-abelian categoriesII: homology. Theory Appl. Categ. 12(4), 195–224 (2004)
  14. Gnedbaye, A.V.: Third homology groups of universal central extensions of a Lie algebra. Afr. Math. (Série 3) 10, 46–63 (1999)
  15. Gran Marino, Van der Linden Tim, On the second cohomology group in semi-abelian categories, 10.1016/j.jpaa.2007.06.009
  16. Gray, J.R.A., Van der Linden, T.: Peri-abelian categories and the universal central extension condition (2013, in preparation)
  17. Higgins P. J., Groups with Multiple Operators, 10.1112/plms/s3-6.3.366
  18. Janelidze George, Galois Groups, Abstract Commutators, and Hopf Formula, 10.1007/s10485-007-9107-2
  19. Janelidze G., Kelly G.M., Galois theory and a general notion of central extension, 10.1016/0022-4049(94)90057-4
  20. Janelidze George, Márki László, Tholen Walter, Semi-abelian categories, 10.1016/s0022-4049(01)00103-7
  21. Loday Jean-Louis, Pirashvili Teimuraz, Universal enveloping algebras of Leibniz algebras and (co)homology, 10.1007/bf01445099
  22. Makhlouf Abdenacer, Silvestrov Sergei D., Hom-algebra structures, 10.4303/jglta/s070206
  23. Milnor John, Introduction to Algebraic K-Theory. (AM-72), ISBN:9781400881796, 10.1515/9781400881796
  24. Weibel, Ch. A.: An introduction to homological algebra. Camb. Stud. Adv. Math., vol. 38. Cambridge Univ. Press (1997)