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Abstract— This paper considers the solution of a real-time
optimization problem using adaptive extremum seeking control.
It is assumed that the equations describing the dynamics of
the nonlinear system and the cost function to be minimized
are unknown and that the objective function is measured. The
main contribution of the paper is to formulate the extremum-
seeking problem as a time-varying estimation problem. The
proposed approach is shown to avoid the need for averaging
results which minimizes the impact of the choice of dither signal
on the performance of the extremum seeking control system. A
simulation is used to illustrate the effectiveness of the proposed
technique.

I. INTRODUCTION

Extremum-seeking control (ESC) has been the subject
of considerable research effort over the last decade. This
approach, which dates back to the 1920s [1], is an ingenious
mechanism by which a system can be driven the optimum of
a measured variable of interest [2]. The revived interest in
the field was primarily sparked by Krstic and co-workers
who provided an elegant proof of the convergence of a
standard perturbation based extremum seeking scheme for
a general class of nonlinear systems. The main drawback
of ESC is the lack of transient performance guarantees. As
highlighted in the proof of Krstic and Wang [3], the stability
analysis relies on two components: 1) an averaging analysis
of the persistently perturbed ESC loop and 2) a time-scale
separation of ESC closed-loop dynamics between the fast
transients of the system dynamics and the slow quasi steady-
state extremum-seeking task. This analysis demonstrates
that the three key parameters for ESC, which include the
amplitude and frequency of the dither signal and the gain
of the gradient algorithm, must be chosen very carefully to
guarantee convergence to a neighbourhood of the unknown
optimum. The amplitude of the dither signal must be large
enough to provide sufficient excitation but cannot be too
large to ensure that a sufficiently small neighbourhood of
the optimum is reached. The frequency of the dither signal,
taken as the singular perturbation parameter, must be small
enough to ensure that the stability properties of the slow and
fast time scales are not altered when they are interconnected.
Finally, the choice of the gain of the gradient update used in
the ESC cannot be adjusted freely since the convergence of
the ESC depends largely on the magnitude of the unknown
Hessian of the steady-state measured output.
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Over the last few years, many researchers have considered
various approaches to overcome the limitations of ESC. In
[4], the performance limitations associated with ESC were
considered in detail. Tighter bounds on the tuning parameters
as well as more precise statements on the guarantees of
convergence were proposed. The non-local properties on
ESC was studied in [5]. This work extends the work in
[3] by considering the case where the fast dynamics can be
assumed to be uniformly global asymptotically stable along
the equlibrium manifold. More precise statements concerning
the dependence of the stability properties on the tuning
parameters are provided. In [6], [7] and [8], an alternative
ESC algorithm is considered where an adaptive control
and estimation approach is used. The key aspect of this
approach is that the equilibrium map is parameterized and the
parameters are estimated with the help of a tailored adaptive
estimation technique. The results in [9] unify the approaches
based on singular perturbation and parameter estimation by
considering the case where the objective function is param-
eterized in a known fashion. Recent work reported in [10]
have proposed a Newton-based extremum-seeking technique
that provides an estimate of the inverse of the Hessian of
the cost function. This technique can effectively alleviate
the convergence problems associated with the increase of
the gain of the Newton update.

In this paper, we provide an alternative extremum-seeking
technique which is based on the estimation of the gradient
as a time-varying parameter. We consider a parameter esti-
mation routine for nonlinear systems with the time-varying
parameters proposed in [11] and apply it in the context of
an extremum seeking controller design approach. The time-
varying parameter estimation technique is used to remove
the need for averaging system to establish the convergence
of the extremum seeking controller to the unknown steady-
state optimum of a measured output function. It also avoids
the need to use the frequency of the dither signal as a sin-
gular perturbation parameter. The proposed ESC algorithm
provides more freedom in the tuning of the ESC loop to
achieve improvements in transient performance.

The paper is organized as follows. A brief problem de-
scription is given in section II. In section III, the proposed
ESC controller is presented for the case of process described
by a static map. The application to an unknown dynamical
system is presented in section IV. A brief simulation study
is presented in V followed by brief conclusions in VI.



II. PROBLEM DESCRIPTION

Consider a nonlinear system

ẋ = f(x, u) (1)
y = h(x) (2)

where x ∈ Rn is the vector of state variables, u is the vector
of input variables taking values in U ⊂ Rp and y ∈ R is
the variable to be minimized. It is assumed that f(x, u) is a
smooth vector valued functions of x and u and that h(x) is
a smooth function of x.

The objective is to steer the system to the equilibrium x∗

and u∗ that achieves the minimum value of y(= h(x∗)). The
equilibrium (or steady-state) map is the n dimensional vector
π(u) which is such that:

f(π(u), u) = 0.

The equilibirum cost function is given by:

y = h(π(u)) = `(u) (3)

Thus, at equilibrium, the problem is reduced to finding the
minimizer u∗ of y = α(u∗).

Some basic assumption are required to ensure that this
problem is well-posed.

Assumption 1: The equilibrium cost (3) is such that
1)

∂`(u∗)
∂u

= 0

2)
∂2`

∂u∂uT
> αI, ∀u ∈ U .

III. STATIC MAP

In this section, we consider the extremum-seeking problem
for a static map:

y = `(u)

that satisfies Assumption 1.
In addition, the following assumptions are required.
Assumption 2: The static-map ` is such that
1)

‖y‖ ≤ Y

2) ∥∥∥∥ ∂`∂u
∥∥∥∥ ≤ L1

3) ∥∥∥∥ ∂2`

∂u∂uT

∥∥∥∥ ≤ L2

∀u ∈ U with positive constants Y > 0, L1 > 0 and L2 > 0
In the development below, the minimization of y is per-

formed in real-time. The input u is taken as a time-varying
signal. That is,

y(t) = `(u(t)) (4)

If one differentiates (4) with respect to time, the following
dynamics are obtained:

ẏ =
∂`

∂u
u̇.

Defining z = y, θ(t) = ∂`
∂u , one can therefore write the

following dynamical system:

ż = u̇θ(t). (5)

We make the following assumption concerning the input
dynamics.

Assumption 3: The input signal u(t) is such that ∀t ≥
t0 ≥ 0

1) u(t) ∈ U
2) ‖u̇‖ ≤ c1

with positive constant c1 > 0
By construction, we have that:

θ̇(t) =
∂2`

∂u∂uT
u̇

and Assumptions 2 and 3, it follows that

‖θ̇(t)‖ ≤ L2c1 = Lθ. (6)

The design of the extremum seeking routine is based on
the dynamics (5). The first step consists in the estimation
of the time-varying parameters θ(t). In the second step,
we define a suitable controller that achieves the extremum-
seeking task.

A. Parameter estimation

Let the estimator model for (5) be chosen as

˙̂z = u̇θ̂(t) +Ke+ c(t)T ˙̂
θ(t), K > 0, (7)

where e = z − ẑ is the estimation error. The time varying
parameter c(t) is the solution of the differential equation:

ċ(t)T = −Kc(t)T + u̇, c(t0) = 0. (8)

The prediction error dynamics are given by:

ė =u̇θ̃(t)−Ke− c(t)T ˙̂
θ(t) (9)

where e(t0) = x(t0)−x̂(t0). We define the auxiliary variable
η = e− c(t)T θ̃(t). The dynamics of η are as follows:

η̇ = −Kη − c(t)T θ̇(t), η(t0) = e(t0) (10)

An estimate of η is generated from

˙̂η = −Kη̂. (11)

As a result, the dynamics of the estimation error η̃ = η − η̂
are

˙̃η = −Kη̃ − c(t)T θ̇(t), η̃(t0) = 0. (12)

Following [12], the preferred parameter estimation update
approach is given as follows.

Let Σ ∈ Rnθ×nθ be generated from

Σ̇ = c(t)c(t)T − kTΣ, Σ(t0) = αI � 0, (13)



where α and kT are strictly positive constant to be assigned.
Based on (7),(8) and (11), one considers the parameter

update law as proposed in [13] is given by

Σ̇−1 =− Σ−1c(t)c(t)TΣ−1 + kTΣ−1,Σ−1(t0) =
1
α
I, (14)

˙̂
θ(t) =proj

{
γΣ−1c(t)(e− η̂), θ̂(t)

}
, θ̂(t0) = θ0 ∈ Θ0, (15)

where Proj{φ, θ̂(t)} denotes a Lipschitz projection operator
[14] such that

−Proj{φ, θ̂(t)}T θ̃(t) ≤ −φT θ̃(t), (16)

θ̂(t0) ∈ Θ0 =⇒ θ̂(t) ∈ Θ,∀t ≥ t0 (17)

where Θ , B(θ̂(t), zθ), where θ̂(t) and zθ are the param-
eter estimate and and uncertainty set radius. Note that by
Assumption 2, the uncertainty set radius zθ can be set to L1.

Assumption 4: There exists constants α1 > 0 and T > 0
such that ∫ t+T

t

c(τ)c(τ)T dτ ≥ α1I (18)

∀t > 0.

B. Controller design

The simplest extremum-seeking controller possible in this
case is given by:

u̇ = −kθ̂ + d(t) (19)

where d(t) is a bounded dither signal with ‖d(t)‖ ≤ D and
k > 0.

Note that the controller is such that ‖u̇‖ ≤ kL1 +D.
Theorem 1: Let Assumptions 2 to 4 hold. The extremum-

seeking controller (19), (14) and (15) is such that the system
converges exponentially to a neighbourhood of the minimizer
u∗ of the static cost y. The size of this neighbourhood is
adjustable by increasing the gains K, kT and k.
Proof: (Sketch) We consider the Lyapunov function:

W =
1
2
η̃T η̃ +

1
2
θ̃TΣθ̃ +

1
2
θT θ.

Upon differentiating and exploiting the properties of the
projection algorithm, we have that:

Ẇ ≤− η̃TKη̃ + η̃T c(t)T θ̇

+ θ̃(t)TΣ(t)θ̇(t)− kT
1
2
θ̃(t)TΣθ̃(t)

− 1
2

(e− η̂)T (e− η̂) +
1
2
η̃T η̃ = θT θ̇

(20)

where k1 and kT are positive constants to be assigned. Recall
that θ(t) = ∂`

∂u and that θ = θ̂ + θ̃, Then

θ̇ =
∂2α

∂u∂uT
u̇ = −kΓθ + kΓθ̃ + Γd(t)

where Γ = ∂2α
∂u∂uT

. Upon substitution, one obtains:

Ẇ ≤ −η̃TKη̃ − kη̃T c(t)TΓθ + kη̃T c(t)TΓθ̃

+ η̃T c(t)TΓd(t)− kT θ̃(t)TΣθ̃(t)− 1
2

(e− η̂)T (e− η̂)

+
1
2
η̃T η̃ − kT θ̃(t)TΣθ̃(t)− 1

2
(e− η̂)T (e− η̂)

+
1
2
η̃T η̃ − kθ̃(t)TΣΓθ + kθ̃(t)TΣΓθ̃

+ θ̃(t)TΣΓd(t)− kθTΓθ + kθTΓθ̃ + θTΓd(t)

The boundedness of the matrix Σ(t) can be shown as follows.
By integration, one gets:

Σ(t) =e−kT tΣ(0) +
∫ t

0

e−kT (t−τ)c(τ)c(τ)T dτ

≥
∫ t

t−T
e−kT (t−τ)c(τ)c(τ)T dτ ≥ e−kTTα1I = γ1I

By the boundedness of c(t), one can also write,

Σ(t) ≤ Σ(0) + β2

∫ t

0

e−kT (t−τ)dτI ≤ αI + β2I = γ2I.

As a result, we get that:

γ1I ≤ Σ(t) ≤ γ2I and γ−1
2 I ≤ Σ(t)−1 ≤ γ−1

1 I.

Completing the squares, exploiting the boundedness of
Σ(t) and Γ and rearranging, we obtain the following in-
equality:

Ẇ ≤− η̃T
(
K − 1

2
I − L2k(k1 + k2) + k3

2
c(t)T c(t)

)
η̃

−

(
kT −

L2

2k2
γ1 − γ1

(
L2k

(k4 + k5)
2

+ L2k

)

− L2kk6

2

)
θ̃T θ̃ − 1

2
(e− η̂)T (e− η̂)

−
(
k − kγ2

2k4
− k

2k1
−
(

k

2k6
+
k7

2

))
θTΓθ

+
(
L2

2k3
+
γ2L2

2k5
+

1
2k7

)
d(t)T d(t)

We let:
K = kη1I + kη2c(t)

T c(t)

Based on the last inequality, it follows that there exist
constants k, kT , kη1 and kη2 such that:

Ẇ ≤− kη η̃T η̃ − kθ θ̃T θ̃ −
1
2

(e− η̂)T (e− η̂)

− kyθTΓθ + kd‖d(t)‖2

≤− 2kηVη̃ − 2
kθ
γ2
Vθ̃ −

1
2

(e− η̂)T (e− η̂)

− ky
α
θT θ + kd‖d(t)‖2

≤− kWW + kd‖d(t)‖2

(21)

where kη , kθ, ky and kd are strictly positive constants.



It follows that η̃, θ̃ and θ convergence exponentially to a
neighbourhood of the origin. The size of this neighbourhood
depends on the choice of gains k, kT and K and the
magnitude of the dither signal.

IV. OPTIMIZATION IN DYNAMICAL SYSTEMS

In this section, we consider the initial extremum-control
system which consists in steering the unknown dynamical
system (1) to the equilibrium that minimizes the measure
cost function (2).

The closed-loop extremum seeking control system is given
by:

εẋ = f(x, u)

u̇ = −kθ̂1(t) + d(t)
˙̂
θ = proj

{
Σ−1c(e− η̂)

}
˙̂η = −Kη̂ (22)

ċ = −Kc+ u̇u̇T

˙̂y = u̇(t)θ̂ +Ke+ cT
˙̂
θ

Σ̇ = ccT − kTΣ

where e = h(x)− ŷ.
As in other works on extremum-seeking control, the

closed-loop dynamics of the system are written in error form
in terms of a two time-scale system where t is the slow time-
scale and the system’s dynamics are assumed to evolve over
a fast time-scale t

ε . The parameter ε > 0 is a small strictly
positive parameter to be assigned.

Let us define the deviation variables x̃ = x − π(u) and
ũ = u−u∗ where u∗ is the local minimizer of the steady-state
map y = `(u). The auxiliary variable is defined as above.
However, one must take into account the measurement of the
cost function over the fast time-scale. That is:

η = e− cT θ̃

where e = h(x̃+π(ũ+u∗))−ŷ represents the error dynamics
in the fast and the slow time scale. As a result, one obtains
the following dynamics:

η̇ =
1
ε

∂h(x)
∂x

f(x, u) +
∂h(x)
∂x

∂π(u)
∂u

u̇− ˙̂y

− ċT θ̃ + cT
˙̂
θ − cT θ̇

Substituting for ˙̂y and ċ, one obtains:

η̇ =
1
ε

∂h(x)
∂x

f(x, u) +
∂h(x)
∂x

∂π(u)
∂u

u̇− ∂h(π(u))
∂x

∂π(u)
∂u

u̇

−Kη − cT θ̇

As a result, the η dynamics is affected by the fast and slow
dynamics. In the following, we will assume that the gain
matrix K is such that

K = Ks +
1
ε
Kf

where Ks and Kf are such that Ki+KT
i > βiI with βi > 0

for i = s, f . The estimation error dynamics η̃ are given by:

˙̃η =− 1
ε
Kf η̃ −Ksη̃ − cT θ̇

1
ε

∂h(x)
∂x

f(x, u)

+
(
∂h(x)
∂x

∂π(u)
∂u

u̇− ∂h(π(u))
∂x

∂π(u)
∂u

u̇

)
Similarly, one must also rewrite the parameter estimation

error as:
˙̃
θ = −proj

{
Σ−1c(e− η̂)

}
+ θ̇

= −proj
{
γΣ−1c(t)c(t)θ̃ + Σ−1c(t)η̃

}
+ θ̇

The gradient algorithm can be written in deviation form
as:

˙̃u = −kθ̂ + d(t) = −kθ + kθ̃ + d(t)

Finally, the gradient of the cost function is given by:

θ̇ = −kΓθ + kΓθ̃ + Γd(t).

One can write the system (22) in deviation form as
follows:

ε ˙̃x = f(x̃+ π(ũ+ u∗), ũ+ u∗)− ε∂π
∂u

˙̃u

ε ˙̃η =
∂h(x)
∂x

f(x, u)−Kf η̃ − εKsη̃ − εcT θ̇

+ ε

(
∂h(x)
∂x

∂π(u)
∂u

u̇− ∂h(π(u))
∂x

∂π(u)
∂u

u̇

)
(23)

˙̃u = −kθ + kθ̃ + d(t)
˙̃
θ = −proj

{
γΣ−1c(t)c(t)θ̃ + Σ−1c(t)η̃

}
+ θ̇

θ̇ = −kΓθ + kΓθ̃ + Γd(t).

This system assumes that standard singular perturbation
form. Following the standard nomenclature, the reduced
system (x̃ = π(u)) is given by:

˙̃u = −kθ + kθ̃ + d(t)
˙̃
θ = −proj

{
γΣ−1c(t)c(t)θ̃ + Σ−1c(t)η̃

}
+ θ̇ (24)

˙̃η = −Kη̃ − cT θ̇
θ̇ − kΓθ + kΓθ̃ + Γd(t)

The boundary layer system is given by

dx̃

dτ
=f(x̃+ π(ũ+ u∗), ũ+ u∗)

dη̃

dτ
=
∂h(x̃+ π(ũ+ u∗))

∂x
f(x̃+ π(ũ+ u∗), ũ+ u∗)−Kf η̃

(25)

Assumption 5: The origin of the nonlinear system (1) is
locally exponentially stable ∀u ∈ U .

Let Xr = {x̃ ∈ Rn | ‖x̃‖ ≤ r} for r > 0, a positive
constant. Similarly, let Er = {η̃ ∈ Rm | ‖η̃‖ ≤ r}.



Assumption 6: The vector field f(x̃+ π(ũ+ u∗), ũ+ u∗)
is such that:

‖f(x̃+ π(ũ+ u∗), ũ+ u∗)‖ ≤ Lf‖x̃‖

∀x̃ ∈ X and ∀u ∈ U where Lf > 0 is a positive constant.
Similarly we assume the following:
Assumption 7: The output map h(x) is such that:
1) ∥∥∥∥∂h(x̃+ π(ũ+ u∗))

∂x

∥∥∥∥ ≤ Lh
2) ∥∥∥∥∂h(x̃+ π(u))

∂x
− ∂h(ỹ + π(u))

∂x

∥∥∥∥ ≤ Lh‖x̃− ỹ‖
∀x̃ and ỹ ∈ X and ∀u ∈ U where Lh > 0 is a positive
constant.

Finally, we make the following assumption concerning the
steady-state map, π(u)

Assumption 8: The steady-state map π(u) is such that:∥∥∥∥∂π(u)
∂u

∥∥∥∥ ≤ Lπ
∀u ∈ U where Lπ > 0 is a positive constant.
By assumptions 6, 7 and 8, it follows that there exists a Kf

such that the origin of the boundary layer (25) is locally
exponentially stable.

It then follows that there exists a Lyapunov function
V (x̃, η̃) and positive constants, α1, α2, α3, α4, α5 and α6

such that:
1)

α1(‖x̃‖2 + ‖η̃‖2) ≤ V (x̃, η̃) ≤ α2(‖x̃‖2 + ‖η̃‖2)

2)

dV

dτ
=
∂V

∂x̃
f(x̃+ π(u), u)

+
∂V

∂η̃

(
∂h(x̃+ π(u))

∂x
f(x̃+ π(u), u)−Kf η̃

)
≤ −α3‖x̃‖2 − α4‖η̃‖2

3) ∥∥∥∥[∂V∂x̃ , ∂V∂η̃
]∥∥∥∥ ≤ α5‖x̃‖+ α6‖η̃‖

∀u ∈ U , x̃ ∈ Xr.
Theorem 2: Consider nonlinear system (1) and the cost

function (2). Let Assumptions 1 to 8 be fulfilled then
the time-varying parameter estimation scheme and the
extremum-seeking controller (19) is such that for every ε ∈
(0, ε∗), the closed-loop system converges exponentially to a
neighbourhood of the unknown local minimum of the cost
function (2). The size of the neighbourhood depends on the
choice of gains K, kT and k and the magnitude of the dither
signal d(t).
Proof: To study the stability of the two time-scale closed-
loop system (23), we propose the Lyapunov function:

V = δW + (1− δ)V (x̃, η̃)

where δ ∈ (0, 1).
Differentiating with respect to t, one obtains:

V̇ ≤ − δkWW + δkd‖d(t)‖2

+ δη̃T
(
∂h(x)
∂x

∂π(u)
∂u

u̇− ∂h(π(u))
∂x

∂π(u)
∂u

u̇

)
− (1− δ)

ε
α3‖x̃‖2 −

(1− δ)
ε

α4‖η̃‖2.

By Assumptions 6, 7 and 8, the inequality becomes:

V̇ ≤ − δkWW + δkd‖d(t)‖2 + δLπLh(kL1 +D)‖x̃‖‖η̃‖

− (1− δ)
ε

α3‖x̃‖2 −
(1− δ)
ε

α4‖η̃‖2.

It then follows that there exists an ε∗ such that ∀ε ∈ (0, ε∗),

V̇ ≤ − δkWW − ke‖x̃‖2 − ke‖η̃‖2 + δkd‖d(t)‖2

where ke is a strictly positive constant.

V. SIMULATION EXAMPLE

A. Single input static map problem
Let us consider the simple quadratic cost given by:

y = 0.5 + 0.1u+ 0.2u2

We consider the application of the algorithm with the
following tuning parameters, d(t) = 0.1 sin(t), k = 100
and k1 = k2 = k3 = k4 = 100. In contrast to standard
perturbation based ESC, the choice of dither is completely
arbitrary.

Simulation results are shown in Figure 1, 2, 3 and 4.
Figure 1 shows that progress of the cost function and the
corresponding input value as a function of time. For the
value of gain k = 100, the long term affect of the dither
signal is completely removed. The parameter estimates and
the true time-varying parameters are shown on Figure 2. The
parameter estimation is shown to converge quickly to the true
parameters. In addition, the gradient is shown to approach
zero as required.

The results demonstrate that the observed performance
of the extremum seeking controller differs from existing
perturbation ESC techniques. The proposed technique is such
that the injected perturbation is completely removed as the
gradient of the cost function is reduced. The asymptotic con-
vergence is therefore independent of the amplitude and the
frequency of the dither signal. Figure 3 shows that result for
a dither signal d(t) = sin(10t) with an optimization gain of
k = 10. If one increases the gain to k = 100, the trajectories
of the extremum seeking controller shown 4 are obtained. In
addition, the speed of convergence is dramatically improved
when the optimization gain is increased.

VI. CONCLUSION

In this paper, an alternative ESC technique was proposed.
The technique is based on the time-varying estimation of the
unknown gradient. The ESC algorithm is shown to provide
local exponential convergence of the closed-loop system to
the unknown optimum. The technique simplifies the tuning
of such schemes by avoiding the limitations associated with
choice of dither.
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Fig. 1. Plot of the cost function and the corresponding control as a function
of time for the single-input example.
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Fig. 2. Plot the parameter estimates as a function of time for the single-
input example.
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Fig. 3. Plot of the cost function and the corresponding control as a function
of time for a smaller gain and high dither amplitude.
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Fig. 4. Plot of the cost function and the corresponding control as a function
of time for a larger and high dither amplitude.


